
An Attribute-Based Events Model for Collective Adaptive Systems

based on joint work with M. Pasqua (U. Verona), M. Paier (IMT Lucca), and others

Marino Miculan

Theory Days at Randivälja
February 2, 2024

marino.miculan@uniud.it

Event-driven programming of smart systems

Environment

RULE

input

E
v
e
n
t

Condition

output

A
c
t
io

n

(sensors) (actuators)

State-based ECA rules: “on movement if alarm = "active" then siren on”

variables can be internal, or connected to sensors or to actuators

M. Miculan Theory Days 20241 22

Event-driven programming of smart systems

Environment

RULE

input

E
v
e
n
t

Condition

output

A
c
t
io

n

(sensors) (actuators)

State-based ECA rules: “on movement if alarm = "active" then siren on”

variables can be internal, or connected to sensors or to actuators

M. Miculan Theory Days 20241 22

Actual smart (ECA) devices setting

Centralized

No intra-nodes communication

Cloud-dependent

Very popular as Trigger-Action

Platforms (TAP):

Internet

M. Miculan Theory Days 20242 22

Next (ECA) IoT architecture: edge computing

Fully distributed

Communication between nodes

Cloud-agnostic

Identity decoupled, for scalability

Collective Adaptive Systems

Internet

M. Miculan Theory Days 20243 22

Programming model for edge CAS?

We need programming abstractions and models for edge computing with:

peer-to-peer, decentralised control

identity decoupling, for scalability (no point-to-point communication)

open and flexible (nodes can join and leave dynamically)

which integrate neatly within the ECA paradigm

M. Miculan Theory Days 20244 22

Attribute-based Memory Updates [MM, M. Pasqua, ICTAC 2021]

Nodes behavior: defined by ECA rules like “on z for all ⇧ : x e”

3 2

1

Nodes state: local memory

Interaction: remote updates

1

2

Interaction: remote updates

1

2

Attribute-based interaction: on all nodes satisfying ⇧, update the remote x with e

M. Miculan Theory Days 20245 22

AbU syntax

An AbU system S is an AbU node R , ◆h⌃, ⇥i or the parallel of systems S1 kS2
Each node is equipped with a list R of AbU rules and an invariant ◆ specifying

admissible states

evt m act1 , cnd : act2

task
event

list of resources

assignments

x " (local)

forall @ x " (remote)default

for all: @(x < x̄) : x̄ x , ȳ ȳ + 1
“on all nodes with (remote) x greater than the current (local) x”

“update the (remote) x with the current (local) x , and increment remote y ”

M. Miculan Theory Days 20246 22

AbU execution model

Stable

(I
N

P
U

T)

v
discovery

~1 ~2

v

(EXEC)
~1

discovery

~4 ~2
~3

~1 . . .

. . .

~3

(E
X

E
C
)

~3
discovery

~3

Stable

(WAVE)

S S
0

M. Miculan Theory Days 20247 22

AbU operational semantics [M. Pasqua, MM, TCS 2023]

LTS semantics, with judgments:

R , ◆h⌃, ⇥i ↵�_ R , ◆h⌃0, ⇥0i

A label ↵ can be:

an input label, upd I T

an execution label, upd B T

a discovery label, T

M. Miculan Theory Days 20248 22

AbU operational semantics: rules

(Exec)

upd � � upd = (x1, v1) . . . (xk, vk) �� = �[v1/x1 . . . vk/xk] �� |= ◆
��� = � \ {upd} X = {xi | i � [1..k] � �(xi) 6= ��(xi)}

�� = ��� [DefUpds(R, X, ��) [LocalUpds(R, X, ��) T = ExtTasks(R, X, ��)

R, ◆h�, �i upd�T����_ R, ◆h��, ��i

(Exec-Fail)
upd � � upd = (x1, v1) . . . (xk, vk) �� = �[v1/x1 . . . vk/xk] �� 6|= ◆ �� = � \ {upd}

R, ◆h�, �i upd�T����_ R, ◆h�, ��i

(Input)

v1, . . . , vk � V �� = �[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
�� = � [DefUpds(R, X, ��) [LocalUpds(R, X, ��) T = ExtTasks(R, X, ��)

R, ◆h�, �i (x1,v1)...(xk,vk)�T������������_ R, ◆h��, ��i

(Disc)
��� = {�act�� | �i � [1..n] . taski = � : act � � |= �} �� = � [���

R, ◆h�, �i task1...taskn�������_ R, ◆h�, ��i

(StepL)
S1

��_ S�
1 S2

T�_ S�
2

S1 k S2
��_ S�

1 k S�
2

��{upd�T,upd�T} (StepR)
S1

T�_ S�
1 S2

��_ S�
2

S1 k S2
��_ S�

1 k S�
2

��{upd�T,upd�T}

Figure 1: Semantics of AbU calculus with invariants.

indicating in which operative state is the drone; and a resource helpPos, indicating the position of a drone
that needs help. Formally, the AbU system modeling the drone-swarm scenario is

S = Rh�1, ?i k Rh�2, ?i k Rh�3, ?i k Rh�4, ?i

where R contains, among the others, the following two AbU rules:

battery m @(battery < 5 � battery > 80) : helpPos position (1)
helpPos m (|position� helpPos| < 7.0) : mode ‘rescue’ (2)

Now suppose that the execution states of the drones are the following:

�1 = [battery ��4 position ��2.0 mode �� ‘measure’ helpPos ��0.0]
�2 = [battery ��81 position ��15.0 mode �� ‘measure’ helpPos ��0.0]
�3 = [battery ��97 position ��6.0 mode �� ‘measure’ helpPos ��0.0]
�4 = [battery ��65 position ��8.0 mode �� ‘measure’ helpPos ��0.0]

The rule (1) says that when the current drone battery level is low (battery < 5), then the current drone
have to send to all (@) neighbors with some energy to share (battery > 80) its position, performing a remote
update (helpPos position). In the example, the first node can fire the rule (1), since its battery level
is low. Then, it pre-evaluates the task condition, yielding 4 < 5 � battery > 80, which is sent to the other
nodes, together with the pre-evaluation of the task action, i.e., helpPos 2.0. Among all receivers, only
the second and the third nodes are interested in the communication, since they are the only with battery
level greater than 80. So they both add to their pool the update (helpPos, 2.0). This ends the discovery
phase originated by the first node.

The rule (1), instead, is fired when a drone receives a help request (i.e., when its resource helpPos changes)
and basically checks if the current drone position is close to the requester position (|position� helpPos| <
7.0). If it is the case, the current drone enters the rescue mode performing a local update (mode ‘rescue’).
In the example, when the second and the third nodes execute the update (helpPos, 2.0), the task of the rule
(1) may be executed. For the second node this does not happen, since |15.0 � 2.0| < 7.0 is not true (the
node is too far from the first node). Instead, |6.0� 2.0| < 7.0 and the third node can execute the rule task,
adding to its pool the update (mode, ‘rescue’).

5

M. Miculan Theory Days 20249 22

Research questions and problems

1 Stability: after an input, does a wave computation always terminates?

2 Confluence: will different executions end up with the same state(s)?

3 Global invariants: how to guarantee that trajectories will not invalidate a given

global property?

4 Security: how to avoid information leakages?

5 Safety: how to avoid unintended interactions?

6 Implementation: how to make it efficient, portable and scalable?

7 . . .

M. Miculan Theory Days 202410 22

Stabilization

The wave semantics may exhibit internal divergence, namely S
↵0�_ S

0 ↵1�_ . . .

ECA

dependency graph

r1 r2

r3 r4

r5 r6
rule D r1 (⇤) : r2 ⇤

rule C r5 (⇤) : r6 ⇤

rule B r3 r2 (⇤) : r4 ⇤

rule A r4 (⇤) : r6 ⇤

rule A r4 (⇤) : r6 ⇤ r1 ⇤

Theorem (AbU stabilization)

If the ECA dependency graph of an AbU system S is acyclic, then S is stabilizing.

Can we do better? E.g., including (some) loops? (Control theory may be useful here?)

M. Miculan Theory Days 202411 22

Stabilization

The wave semantics may exhibit internal divergence, namely S
↵0�_ S

0 ↵1�_ . . .

ECA

dependency graph

r1 r2

r3 r4

r5 r6
rule D r1 (⇤) : r2 ⇤

rule C r5 (⇤) : r6 ⇤

rule B r3 r2 (⇤) : r4 ⇤

rule A r4 (⇤) : r6 ⇤ r1 ⇤

Theorem (AbU stabilization)

If the ECA dependency graph of an AbU system S is acyclic, then S is stabilizing.

Can we do better? E.g., including (some) loops? (Control theory may be useful here?)

M. Miculan Theory Days 202411 22

Confluence

The AbU scheduler should not influence the AbU semantics: for all S1 and S2 such that

S �_⇤
S1 and S �_⇤

S2, there exists S
0
such that S1 �_⇤

S
0
and S2 �_⇤

S
0

labeled ECA

dependency graph

r1 r2

r3 r4

r5 r6

rule A r4 (⇤) : r6 ⇤

rule B r3 r2 (⇤) : r4 ⇤

rule C r5 (⇤) : r6 ⇤

rule D r1 (⇤) : r2 ⇤

D

B
B

C A

rule A r4 (⇤) : r6 ⇤ r3 ⇤
A

Theorem (AbU confluence)

If for each pair (x , y) of nodes in the labeled ECA dependency graph of an AbU system

S we have that |walks(x , y)| 1, then S is confluent.

M. Miculan Theory Days 202412 22

Confluence

The AbU scheduler should not influence the AbU semantics: for all S1 and S2 such that

S �_⇤
S1 and S �_⇤

S2, there exists S
0
such that S1 �_⇤

S
0
and S2 �_⇤

S
0

labeled ECA

dependency graph

r1 r2

r3 r4

r5 r6

rule B r3 r2 (⇤) : r4 ⇤

rule C r5 (⇤) : r6 ⇤

rule D r1 (⇤) : r2 ⇤

D

B
B

C A

rule A r4 (⇤) : r6 ⇤ r3 ⇤
A

Theorem (AbU confluence)

If for each pair (x , y) of nodes in the labeled ECA dependency graph of an AbU system

S we have that |walks(x , y)| 1, then S is confluent.

M. Miculan Theory Days 202412 22

Security and safety: Behavioral equivalences (Cont’d)

Security: protection of confidential data (by means of noninterference)

Assign different security levels to resources: e.g. L (public) and H (confidential)

Security policy: No information flow from H to L allowed

Bisimulation ⇡hL
that hides L-level updates

R1 . . .Rn

R1 . . .Rn R1 . . .Rn

⌃1 . . . ⌃n ⌃0
1

. . . ⌃0
n

⇡hL

for all L-equivalent states ⌃1 ⌘L ⌃0
1 . . . ⌃n ⌘L ⌃0

n

M. Miculan Theory Days 202413 22

Security and safety: Behavioral equivalences (Cont’d)

Safety: prevention of unintended interactions

The systems S and R are known to be safe

Is the ensemble S k R still safe?

Bisimulation ⇡hS
that hides the updates of S

S k ⇡hS

R R

S does not interact with, or is transparent for, R

M. Miculan Theory Days 202414 22

Hiding bisimulation

Weak bisimulation hiding labels not related to the requirements

Parametric on a function h making non-observable labels ↵ such that h(↵) = ⇧

if h(↵2) 6= ⇧

↵1

↵2

↵3

⇡h

↵1

↵2

↵3

if h(↵2) = ⇧

↵1

↵2

↵3

⇡h with h(↵0
2) = ⇧

↵1

↵0
2

↵3

Security hL hides:

discovery labels

execution labels with H resources

Safety hS hides:

discovery labels

execution labels produced by S

M. Miculan Theory Days 202415 22

Security: verification mechanism

Algorithm IFRules for computing information flows:

context is L

x "
explicit

x : L " not constant

context is H

x "
implicit

x : L " constant

Compute a constancy analysis for conditions and expressions

Check explicit flows for the default action

Check explicit and implicit flows for the task action

Theorem (Soundness for Security)

If IFRules(R) = false then R is noninterferent, namely R is secure.

M. Miculan Theory Days 202416 22

Safety: verification mechanism

Compute sinks: resources that rules may update

Compute sources: resources that may influence rules behavior

Check that the sinks of S does not overlap with the sources of R

x1 . . . xk m y1 "1 . . . yn "n , (cnd) : yn+1 "n+1 . . . yn+m "n+m

event default task

{y1, . . . , yn} [{yn+1, . . . , yn+m} LHSLHS

{x1, . . . , xk} [Vars("1) [. . . [Vars("n) [Vars(cnd) [Vars("n+1) [. . . [Vars("n+m)
RHS RHS

Theorem (Soundness for Safety)

If sinks(S) \ sources(R) = ? then S is transparent for R.

M. Miculan Theory Days 202417 22

A (modular) distributed implementation

AbU node

Device driversIoT interface

sensors/actuators

Distribution Communication layer

other AbU nodes
network

ECA rules engine Attribute-based memory updatesDistributed discovery

ECA rules engine module: AbU semantics

Device drivers module: abstraction of physical resources

Distribution module: abstraction of send/receive and cluster nodes join/leave

M. Miculan Theory Days 202418 22

AbU-lang: a Domain Specific Language for the IoT

1 # AbU devices definition.

2

3 hvac : "An HVAC control system" {

4 physical output boolean heating = false

5 physical output boolean condit = false

6 logical integer temp = 0

7 logical integer humidity = 0

8 physical input boolean airButton

9 logical string node = "hvac"

10 where not (condit and heating == true)

11 } has cool warm dry stopAir

12

13 tempSens : "A temperature sensor" {

14 physical input integer temp

15 logical string node = "tempSens"

16 } has notifyTemp

17

18 humSens : "A humidity sensor" {

19 physical input integer humidity

20 logical string node = "humSens"

21 } has notifyHum

22 \%

23 AbU (ECA) rules definition.

24 Rules can be referenced by multiple devices.

25 %\

26

27 rule cool on temp

28 for (this.temp < 18) do this.heating = true

29

30 rule warm on temp

31 for (this.temp > 27) do this.heating = false

32

33 rule dry on humidity; temp

34 for (this.temp * 0.14 < this.humidity)

35 do this.condit = true

36

37 rule stopAir on airButton

38 for (this.airButton) do this.condit = false

39

40 rule notifyTemp on temp

41 for all (ext.node == "hvac")

42 do ext.temp = this.temp

[M. Pasqua, M. Comuzzo, MM., IEEE Access 2022]

M. Miculan Theory Days 202419 22

AbU-lang Programs Compilation Cycle

AbU program

De-sugaring
and

Splitting

Device 1

sub-program

Device 2

sub-program

.

.

.

Device n
sub-program

AbU Compiler

AbU Compiler

AbU Compiler

Java Compiler

Go Compiler

IoT lib

IoT lib

IoT lib

M. Miculan Theory Days 202420 22

Conclusion

AbU: attribute-based memory updates programming

Simple to use (ECA paradigm)

Suitable for the IoT domain

Strongly decentralized

Local nodes coordination

Supports several verification techniques

M. Miculan Theory Days 202421 22

References

Thanks for the attention

- M Miculan, M Pasqua, A Calculus for Attribute-based Memory Updates, Proc. ICTAC

2021 - LNCS 12819;

- M Pasqua, M Miculan, On the Security and Safety of AbU Systems, International

Conference on Software Engineering and Formal Methods, LNCS 13085, 2021.

- M Pasqua, M Miculan, Distributed Programming of Smart Systems with

Event-Condition-Action Rules, ICTCS 2022: 201-206

- M Pasqua, M Comuzzo, M Miculan, The AbU Language: IoT Distributed

Programming Made Easy, IEEE Access 10: 132763-132776 (2022)

- M Pasqua, M Miculan, AbU: A calculus for distributed event-driven programming with

attribute-based interaction. TCS 958: 113841 (2023)

- https://github.com/abu-lang

M. Miculan Theory Days 202422 22

https://github.com/abu-lang

