
Compositional Bigraphical Models for
Container-Based Systems Security
Marino Miculan
DMIF, University of Udine - SERICS Spoke 4
marino.miculan@uniud.it

NeCS Winter School, Cortina d’Ampezzo
January 21, 2025

mailto:marino.miculan@uniud.it

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Microservice-oriented architectures…

• Microservice-oriented architecture
‣ Modern applications are built by

composing microservices through
interfaces

‣ Distributed, component-based
‣ Flexible, scalable, supporting

dynamic deployment and
reconfiguration, agile
programming, etc.

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

… and containers

• Containers are a lighter, more efficient alternative to Virtual Machines
• Ensure execution separation leveraging kernel namespaces and cgroups in the host OS
• Containers offer:

• Fine granularity services
and components
• Clear definition of interfaces
• Support for service and

component composition
• Simpler horizontal and

vertical scalability
• Widely used for Microservice-oriented

Architectures, especially in the Cloud

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Containers enforce weaker separation than VMs

• Applications can be composed by
hundreds or thousands of containers
• A cloud provider often runs many

applications (possibly from different
clients) on the same infrastructure
• Connecting and coordinating containers

into a complete working system is not
trivial
• Violating security goals and policies

through misconfigurations is easy

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Vertical vs Horizontal Composition

• Containers can be composed to
form larger systems
• Two different compositions:
• Vertical*: containers can be

filled with application
specific code, processes…
and containers can be put
inside pods
• Horizontal*: containers are

on a par, and communicate
through channels (sockets,
API), volumes, networks

* = my naming, not official

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Containers can be filled with libraries, code, data…
• Dockerfiles: recipes to build images.

Example:
• Start from an existing image
• Run any command, e.g. to extend the

image with any needed package
• Install programmer’s specific code
• Define the entry point command (what

to execute when the container is
launched)
• Declare exposed ports (interfaces)

• These recipes are fed to docker build
• Result: a new image, which can be run in a

container, or used as basis for further builds
• (We will not discuss dockerfiles in this talk;

see other work from SERICS Spoke 4)

syntax=docker/dockerfile:1
FROM node:12-alpine
RUN apk add --no-cache python2 g++ make
WORKDIR /app
COPY . .
RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

/app

3000

My Code

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

(Horizontal) Composition of containers
• Composition is defined by YAML files

declaring
• (Virtual) Networks
• Volumes (possibly shared)
• For each container

• Name
• Images
• Networks which are connected to
• Port remapping for exposed services
• Volumes
• Links between services

• Configuration file is fed to a tool (e.g.,
docker compose) which downloads images,
creates containers, networks, connections,
etc. and launches the system

14 4. Formalizzazione dei Container come Bigrafi diretti con località

version : ’2’
services :

wp:
image: wordpress
links:

- db
ports:

- "8080:80"
networks :

- front
volumes :

- datavolume :/ var/www/data:ro
db:

image: mariadb
expose :

- "3306"
networks :

- front
- back

pma:
image: phpmyadmin / phpmyadmin
links:

- db:mysql
ports:

- "8181:80"
volumes :

- datavolume :/ data
networks :

- back
networks :

front:
driver : bridge

back:
driver : bridge

volumes :
datavolume :

external : true

Codice 4.1: Un esempio di docker-compose.yml

(a) Container

proc

(b) Processo
(c) Richiesta

(d) Rete
(e) Volume

Figura 4.1: Rappresentazione grafica della segnatura.

14 4. Formalizzazione dei Container come Bigrafi diretti con località

version : ’2’
services :

wp:
image : wordpress
links :

- db
ports :

- "8080:80"
networks :

- front
volumes :

- datavolume :/ var/www/data:ro
db:

image : mariadb
expose :

- "3306"
networks :

- front
- back

pma:
image : phpmyadmin / phpmyadmin
links :

- db:mysql
ports :

- "8181:80"
volumes :

- datavolume :/ data
networks :

- back
networks :

front:
driver : bridge

back:
driver : bridge

volumes :
datavolume :

external : true

Codice 4.1: Un esempio di docker-compose.yml

(a) Container

proc

(b) Processo
(c) Richiesta

(d) Rete
(e) Volume

Figura 4.1: Rappresentazione grafica della segnatura.

wp db pma

front back

datavolume

8080 8181

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

What if a composition configuration is not correct?

• A configuration may contain several
errors, which may lead to problems
during composition, or (worse) at
runtime. E.g.:
• A container may try to access a

missing services, or a service
which is not connected to by a
network
• Security policies violations, e.g. sharing networks or volumes which

should not (or only in a controlled way) leading to information leaks
• Dynamic reconfiguration can break properties previously valid
• Container’s images can be updated at runtime (e.g. for bug fixing)
• Adding or removing containers to an existing and running system

Where are pma
and logger??

wp db pma

front back

datavolume

8080 8181

Oops! I’m leaking
user data to pma

Let’s save admin
password in

/data/passwd

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

What if a composition configuration is not correct?

• Actual composition tools check only very basic aspects
• Common approach: try-and-error
• Expensive
• Slow
• Not scalable
• Not safe enough
• Not acceptable in critical situations

• We aim to analyze, verify (and possibly manipulate) container
configurations before executing the system (static analysis)
and/or at runtime

Configure

Deploy

Test

Error Found!

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

SECCO’s DevSecOps scenario for cloud-native applications
RACS ’23, August 6–10, 2023, Gdansk, Poland L. Verderame et al.

strategies to secure the containers hosting the application. Besides,
speci!c security constraints related to the execution environment
may entail static and runtime guarantees.

To prevent the CI/CD team from managing container security
and to promote the di"usion of cloud-native applications, this work
presents the main ideas at the basis of the Project SecCo (Securing
Containers). In essence, SecCo aims to design and develop a novel
service to secure containers used in microservice-based cloud ap-
plications automatically. At the same time, it also allows to truly
combine development (Dev), security (Sec), and operations (Ops).
To support such a vision, the proposed solution is built around
three main modules, each in charge of a speci!c task, i.e., harden-
ing, compliance veri!cation, and runtime monitoring.

Summing up, the contribution of this paper is twofold: it provides
a thorough discussion of the architecture envisioned in SecCo, and it
presents themain challenges and research questions to be addressed
for partially !lling the gap in container security.

The rest of the paper is structured as follows. Section 2 reviews
past works assessing and enforcing container security, while Sec-
tion 3 discusses the reference scenario. Section 4 introduces the
architecture proposed in SecCo, and Section 5 presents the main
challenges and gaps to be addressed. Lastly, Section 6 concludes
the paper and outlines future research directions.

2 RELATEDWORK
Owing to the importance of the topic, a vast body of research
has started to emerge in the !eld of container security. However,
according to a recent survey [17], the main research trend is to
solve hazards by focusing on the development phase. As possible
examples, some works take advantage of vulnerability analysis
mechanisms [10],[13], while others deploy mitigation strategies
based on well-de!ned patterns or best practices [4],[8]. Another
popular approach to improve container security is built around
static analysis tools, which can be used to reveal the presence of
known CVEs in container images (see, e.g., [5], [6]). Unfortunately,
many de-facto standard mechanisms do not consider vulnerabilities
of application packages or third-party libraries and have a limited
detection rate [14]. In addition, many tools exploiting static analysis
techniques only consider a single container image, thereby missing
the evaluation of the possible interactions with the container engine
or the other microservices (either on local or remote scales).

For the speci!c case of Docker containers, the work in [16] deals
with an evaluation process taking advantage of the information on
the relationship of vulnerable software packages and documented
issues of Docker images. The outcome of the process can be fur-
ther exploited to prevent the di"usion of insecure Docker images.
Another possible mechanism relies upon the static analysis of Dock-
er!les, especially to search for potential vulnerabilities of the used
software components and libraries [7].

On the other hand, the literature also proposes frameworks for
securing the CI/CD pipelines using the DevSecOps paradigm built
around the Docker ecosystem. As an example, the work in [1] in-
troduces a comprehensive solution that integrates existing security
analysis tools (e.g., SonarQube) to improve global security proper-
ties. Dynamic testing techniques can also be used to further advance
in performance. For instance, the work in [25] demonstrates how to

Figure 1: Typical DevSecOps scenario for cloud-native appli-
cations.

“orchestrate” three di"erent automated dynamic testing techniques,
i.e., Web Application Security Testing, Security API Scanning, and
Behaviour Driven Security Testing. Another valuable approach is
based on the creation of speci!c pro!les. To this aim, the work in
[18] exploits AppArmor to produce pro!les to enforce access poli-
cies and mitigate risks caused by zero-day vulnerabilities. Access
control has also been used in more general settings. For instance, ap-
propriate access control rules are presented in [26], while the work
in [24] suggests the use of suitable cryptographic protocols (e.g.,
TLS and OAuth) to enhance the security of a container ecosystem.

A relevant case to consider to fully assess container security deals
with the orchestration phase, signi!cantly improving cloud-native
applications. However, most cloud-oriented security platforms still
need a comprehensive process to enforce security within the stan-
dard operation #ow. To this extent, the work in [12] showcases a
Secure Container Orchestrator engine exploiting hardware-based
trusted execution environment technologies for data protection,
i.e., Intel SGX. Instead, for the speci!c case of Kubernetes, the
work in [29] takes again advantage of AppArmor policies to secure
cloud-native deployments.

Alas, most e"orts dealing with container security mainly aim
at reducing (part of) the attack surface or focusing on a speci!c
vulnerability, threat, use case, or subsystem. Consequently, to our
knowledge, we advocate for a comprehensive security analysis of
the entire container ecosystem, especially from image creation to
distribution processes.

3 REFERENCE SCENARIO
A typical DevSecOps scenario considered in Project SecCo is de-
picted in Figure 1. In more detail, the design of a cloud-native appli-
cation involves creating a set of containers, each hosting a di"erent
component or functionality. The CI/CD team preliminary plans the
requirements for each container and starts the development phase.
The security properties of a container are tested by considering best
practices and guidelines. To this aim, suitable static and dynamic
methodologies are used to identify security issues, which should
be addressed before the delivery phase. The next step is the deploy-
ment of the containers implementing the cloud-native application.
This phase can be completed with a runtime monitoring activity,

Picture from (Verderame et al., 2023)

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

The SECCO projectSecCo: Automated Services to Secure Containers in the DevOps Paradigm RACS ’23, August 6–10, 2023, Gdansk, Poland

Figure 2: Overall architecture for SecCo and interfaces with the DevOps pipeline.

providing a vast array of feedback information. It is worth noticing
that, both test and runtime monitoring phases can further include
functional testing activities, e.g., static test cases and adherence
to performance indexes. Those feedback information can help the
CI/CD team to !x the code or re-organize part of the microservice
architecture.

However, automatizing security procedures in production-quality
or realistic scenarios requires facing several challenges simultane-
ously. First, guidelines, requirements, and tools should be clearly
outlined and built around some consistency properties. Second, the
identi!cation and de!nition of vulnerabilities could be fragmented
and prone to the “viewpoints” of the teams involved in the CI/CD
process. For instance, a team could give more value to business
support constraints, whereas another could prefer to focus on data.

SecCo: Automated Services to Secure Containers in the DevOps Paradigm RACS ’23, August 6–10, 2023, Gdansk, Poland

Figure 2: Overall architecture for SecCo and interfaces with the DevOps pipeline.

providing a vast array of feedback information. It is worth noticing
that, both test and runtime monitoring phases can further include
functional testing activities, e.g., static test cases and adherence
to performance indexes. Those feedback information can help the
CI/CD team to !x the code or re-organize part of the microservice
architecture.

However, automatizing security procedures in production-quality
or realistic scenarios requires facing several challenges simultane-
ously. First, guidelines, requirements, and tools should be clearly
outlined and built around some consistency properties. Second, the
identi!cation and de!nition of vulnerabilities could be fragmented
and prone to the “viewpoints” of the teams involved in the CI/CD
process. For instance, a team could give more value to business
support constraints, whereas another could prefer to focus on data.

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Solid tools need solid theoretical foundations
• We need tools for analyzing, verifying (and possibly manipulate) container

configurations, before executing the system (static analysis), or at runtime
• We need a formal model of containers and services composition
• This model should support:

• Composition and nesting of components
• Dynamic reconfiguration
• Different granularities of representation
• Flexibility (can be adapted to various aspects)
• Openness (we may need to add more details afterwards)
• …

Bigraphs (Milner, 2003): “a general (meta)model for distributed
communicating systems, supporting composition and nesting.”

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Quick intro to bigraphs
A bigraph combines two graph structures based
on the same node set:
• Place graph: a forest describing the nesting of

the nodes (the mereology of the system). Roots
are regions, leaves can be nodes or holes
(sites), where other bigraphs can be grafted
• Link graph: a hypergraph describing the

connectivity of nodes. Outer names and inner
names, represented as open links.
• Each node has a fixed number of connections

(ports), according to a given signature.
Node shapes are visually useful, but not
formally meaningful.

RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names

v2

v3

0 1

v0

v1

v1

v0

v2

0

v3

1

v1

v3
v0

v2

1

2

x0 x1

y0 y1

21

y0 y1

0

0 x0 x1

22

RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names

v2

v3

0 1

v0

v1

v1

v0

v2

0

v3

1

v1

v3
v0

v2

1

2

x0 x1

y0 y1

21

y0 y1

0

0 x0 x1

22

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Quick intro to bigraphs

Each bigraph has
• outer interfaces: roots with exposed names, to be connected
• inner interface: sites where other components can be connected

RESOLVING A BIGRAPH INTO PARTS

GP : m→n

roots . . .

sites . . .

GL : X →Y

bigraph

place graph link graph

G : 〈m, X〉→〈n, Y 〉

. . . inner names

. . . outer names

v2

v3

0 1

v0

v1

v1

v0

v2

0

v3

1

v1

v3
v0

v2

1

2

x0 x1

y0 y1

21

y0 y1

0

0 x0 x1

22

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Bigraphs can be composed - vertically and horizontally

Horizontal composition: “putting things along”
Vertical composition: If H : X→Y and G : Y→Z, then G○H : X→Z is
defined and obtained by grafting place graphs and connecting links.
Example:

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Tools and libraries for bigraphs

• BigraphER (https://uog-bigraph.bitbucket.io/): a modelling
and reasoning environment for bigraphs providing an
efficient implementation of rewriting, simulation, and
visualisation
• Bigraph Framework (https://bigraphs.org/): a framework

written in Java for the manipulation and simulation of
bigraphical reactive systems
• jLibBig (https://bigraphs.github.io/jlibbig/): a Java library

providing efficient and extensible implementation of
bigraphical reactive systems for (directed) bigraphs
• And some others

BigraphER

https://uog-bigraph.bitbucket.io/
https://bigraphs.org/
https://bigraphs.github.io/jlibbig/

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

sensors

Article

UAV Swarms Behavior Modeling Using Tracking Bigraphical
Reactive Systems

Piotr Cybulski * and Zbigniew Zieliński

!"#!$%&'(!
!"#$%&'

Citation: Cybulski, P.; Zieliński, Z.

UAV Swarms Behavior Modeling

Using Tracking Bigraphical Reactive

Systems. Sensors 2021, 21, 622.

https://doi.org/10.3390/s21020622

Received: 13 December 2020

Accepted: 12 January 2021

Published: 17 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Cybernetics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
zbigniew.zielinski@wat.edu.pl
* Correspondence: piotr.cybulski@wat.edu.pl

Abstract: Recently, there has been a fairly rapid increase in interest in the use of UAV swarms both
in civilian and military operations. This is mainly due to relatively low cost, greater flexibility,
and increasing efficiency of swarms themselves. However, in order to efficiently operate a swarm
of UAVs, it is necessary to address the various autonomous behaviors of its constituent elements,
to achieve cooperation and suitability to complex scenarios. In order to do so, a novel method for
modeling UAV swarm missions and determining behavior for the swarm elements was developed.
The proposed method is based on bigraphs with tracking for modeling different tasks and agents
activities related to the UAV swarm mission. The key finding of the study is the algorithm for
determining all possible behavior policies for swarm elements achieving the objective of the mission
within certain assumptions. The design method is scalable, highly automated, and problem-agnostic,
which allows to incorporate it in solving different kinds of swarm tasks. Additionally, it separates
the mission modeling stage from behavior determining thus allowing new algorithms to be used in
the future. Two simulation case studies are presented to demonstrate how the design process deals
with typical aspects of a UAV swarm mission.

Keywords: modeling; bigraphs; unmanned aerial vehicles; UAVs; swarm; planning; agent behavior;
swarm robotics; multi-agent systems

1. Introduction
Recently, unmanned aerial vehicles (UAVs) have been increasingly used both in

the civilian and military spheres, mainly due to their relatively low cost, flexibility, and
the elimination of the need for on-board pilot support. The use of UAV swarms is of
particular importance, especially with increased autonomy of its elements. It is expected [1]
that autonomous UAV swarms will become a key element of future military operations,
as well as civilian applications including security, reconnaissance, intrusion detection, and
support Search and Rescue (SAR) or Disaster Recovery (DR) operations. DR operations
are extremely challenging, and in the immediate aftermath of a disaster, one of the most
pressing requirements is for situational awareness. UAV swarms provide an indispensable
platform for building the situation awareness in such cases. The obvious benefit of using
UAV swarms is an increase in the efficiency of the operation, an accelerated process of
its execution and an increased probability of success. Their use in wilderness search and
rescue (WiSAR), in particular, has been investigated for fast search-area coverage. One of
the most important task in WiSAR is search – until a missing person has been found,
they cannot be rescued or recovered. Many search tasks require a number of UAVs to
remain in communication at all times and in contact with the base station via a short range
ad hoc wireless network. For example, a swarm of UAVs must disperse (take the proper
starting positions) to find the missing person as quickly as possible before their energy
reserves run out. However, in order to efficiently operate a swarm of UAVs, it is necessary
to address the various autonomous behaviors of its constituent elements, sometimes even

Sensors 2021, 21, 622. https://doi.org/10.3390/s21020622 https://www.mdpi.com/journal/sensors

Modeling Self-Adaptive Fog Systems
Using Bigraphs

Hamza Sahli1, Thomas Ledoux2, and Éric Rutten3

1 Stack team, Inria Rennes - Bretagne Atlantique, Nantes, France
2 IMT Atlantique, Stack, Inria, LS2N, Nantes, France

3 Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble, France
{hamza.sahli, eric.rutten, thomas.ledoux}@inria.fr

Abstract. Fog systems are a recent trend of distributed computing
having vastly ubiquitous architectures and distinct requirements mak-
ing their design di�cult and complex. Fog computing is based on an
idea that consists of leveraging both resource-scarce computing nodes
around the Edge to perform latency and delay sensitive tasks and Cloud
servers for the more intensive computation. A convenient way to ad-
dress the challenge of designing Fog systems is through the use of formal
methods, which provide the needed precision and high-level assurance for
their specification through formal verification. In this paper, we present a
novel formal model defining spatial and structural aspects of Fog-based
systems using Bigraphical Reactive Systems, a fully graphical process
algebraic formalism. The model is extended with reaction rules to rep-
resent the dynamic behavior of Fog systems in terms of self-adaptation.
The notion of bigraph patterns is used in conjunction with boolean and
temporal operators to encode spatio-temporal properties inherent to Fog
systems and applications. The feasibility of the modelling approach is
demonstrated via a motivating case study and various self-adaptation
scenarios.

Keywords: Fog systems · Self-adaptation · Formal methods · Modeling
· Bigraphical reactive systems.

1 Introduction

Fog computing [7,14] is an emerging paradigm that aims to decentralize Cloud
systems with distributed micro data-centers in the core network and even more
resource-scarce devices at the Edge of the network. The main idea behind the
Fog is to leverage resources around the Edge to perform latency and delay sensi-
tive tasks closer to end-users and thus avoid network bottlenecks. Cloud servers
are exploited only for the more intensive and latency insensitive functions. By
introducing location-based awareness, the Fog paradigm grants enhanced per-
formance and more assurance about computation and data placement.

A typical Fog system architecture is considered as a set of heterogeneous
computing nodes scattered across separate layers. The bottom one is the Edge

Modeling and Verification of Evolving Cyber-Physical Spaces
Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

ABSTRACT
We increasingly live in cyber-physical spaces – spaces that are both
physical and digital, and where the two aspects are intertwined.
Such spaces are highly dynamic and typically undergo continuous
change. Software engineering can have a profound impact in this
domain, by de�ning suitable modeling and speci�cation notations
as well as supporting design-time formal veri�cation. In this pa-
per, we present a methodology and a technical framework which
support modeling of evolving cyber-physical spaces and reason-
ing about their spatio-temporal properties. We utilize a discrete,
graph-based formalism for modeling cyber-physical spaces as well
as primitives of change, giving rise to a reactive system consisting
of rewriting rules with both local and global application conditions.
Formal reasoning facilities are implemented adopting logic-based
speci�cation of properties and according model checking proce-
dures, in both spatial and temporal fragments. We evaluate our
approach using a case study of a disaster scenario in a smart city.

CCS CONCEPTS
• Software and its engineering→ Software systemmodels;Model-
driven software engineering; Abstraction, modeling and modularity;
Formal methods; Model checking; Requirements analysis;

KEYWORDS
Cyber-Physical Spaces; Dependable Systems; Safety and Reliability;
Modelling and Speci�cation; Formal Veri�cation

ACM Reference Format:
Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. 2017. Modeling and
Veri�cation of Evolving Cyber-Physical Spaces. In Proceedings of 2017 11th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106299

1 INTRODUCTION
Computing and communication capabilities are increasingly embed-
ded into physical spaces thus blurring the boundary between com-
putational and physical worlds; typically, this is the case in modern
cyber-physical systems, like smart buildings or smart cities, here-
after called space-dependent systems. Conceptually, we consider
such a composite environment as a cyber-physical space (CPSp),
which consists of interrelated computational and physical entities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106299

Like any other software-intensive system, a CPSp is not a static
construct. Dynamic actions (e.g. performed by agents) generate con-
tinuous change, leading to the notion of an evolving cyber-physical
space. Thus an evolving CPSp must face the manifold challenges of
dynamism – change may a�ect e.g. safety, security, or reliability
requirements [50, 51] of the overall space-dependent system.

Formally modeling space and its change as well as reasoning
about various properties of evolving space are crucial prerequisites
for engineering dependable evolving CPSp. Our approach targets
the critical system requirements phase, where a way to obtain
formal assurances about the system is highly sought. This phase
enables verifying requirements in the early stages of design, be-
fore implementing the actual system. Additionally, such high-level
reasoning can aid in analysis of system behavior after deployment,
or used for bootstrapping adaptation at runtime. Elementary prop-
erties of an evolving spatial environment of a software-intensive
system can be roughly classi�ed into three kinds:

(spatial; local): Most properties of space are locally bounded,
i.e. they refer to direct, elementary relationships between
entities or sets of entities forming a pre-de�ned structural
pattern or anti-pattern.

(spatial; global): In more advanced cases, we have to predicate
about spatial properties which are non-local in the sense
that the entities of interest may be arbitrarily distributed in
space. Proximity and reachability, for instance, are two kinds
of spatial relationships which play an important role in an
evolving CPSp.

(temporal): Concerning the temporal dimension, we typically
quantify over system states along one or several execution
paths; i.e. we are interested in behavioral characteristics of
certain events or system properties.

A plethora of approaches are actively investigated by the re-
search community to support reasoning about properties of one of
these kinds. For example, graphs and graph pattern matching [16]
provide suitable methods to deal with local spatial properties, while
model checking based on various forms of spatial [46] and tempo-
ral logics [14] provides a rigorous approach for the veri�cation of
global spatial and temporal system properties, respectively. How-
ever, there is a considerable lack of approaches covering all of
the above listed kinds of properties at the same time. This is a
signi�cant de�ciency concerning the engineering of dependable
space-and-time-dependent systems, since the properties of interest
are often complex spatio-temporal properties. Informally speaking,
a complex spatio-temporal property refers to behavioral character-
istics (temporal) of spatial relationships (spatial; global) of complex
structures (spatial; local).

In this paper, we argue that software engineering (SE) can have
a profound impact in engineering of space-and-time-dependent
systems, by de�ning suitable modeling and speci�cation notations
as well as supporting design-time formal veri�cation. The typi-
cal SE approach –provide a suitable model amenable for analysis

38

Abstract—This paper proposes a multi agent system (MAS)

implementing an innovative monitoring and control technique
for industrial wastewater. Nowadays Cyber-Physical System
(Cps) and Internet of Things (IoT) are becoming ever more
common in this field. This fact led to the implementation of
systems composed of many computing units
intercommunicating mutually and characterized by
computational power being adequate to the task to be carried
out. The proposed MAS uses a cooperative approach among
the various agents to achieve the global goal. The system
knowledge is shared among agents. After an initial learning
stage, the agents can cooperate to hit the global objective and
eventually to self-assess the failure of some components. The
system has been designed by means of the bigraph theory
approach.

Index Terms— bigraph, Cyber-Physical Systems, Internet of
Things, model checking, monitoring, multi-agent system

I. INTRODUCTION
YBER Physical Systems (CPS) are considered an
enabling key technology of Industry 4.0 because they

can improve the growing of the three main pillars for the
digitalization of the manufacturing sector (smart products,
smart manufacturing and business models). An interesting
aspect of CPS is the concept of "digital twin" that associates
each physical device to its representation into the virtual
world. So, each physical device is integrated with other
electronic devices having computing, storage and
networking capacities. This is the link between CPS and
other powerful technologies, such as Internet of Things
(IoT) and Multi Agent Systems (MAS).

IoT is a paradigm that allows for the interconnection and
interoperability of everyday life objects, equipped with
computing units, sensors, transceivers for digital
communication and appropriate protocol stacks [1].
Nowadays, these digital communication systems can use
many mature technologies such as Bluetooth, Near Field
Communication (NFC), Radio Frequency Identification
(RFID) for neighborhood devices and wireless network and
4G-LTE for far devices. On the other hand, these systems
can produce a big quantity of data to be handled. This

Manuscript received May 17, 2019; revised December 12, 2019.
V. Di Lecce is with DEI, Politecnico di Bari, Bari, 70126, Italy.

(corresponding author, phone: +39-3701325542; e-mail:
v.dilecce@aeflab.net).

A. Amato is with the DEI, Politecnico di Bari, Bari, 70126, Italy (e-
mail: a.amato@aeflab.net).

A. Quarto is with the myHermes Srl, Taranto, 74121, Italy (e-mail:
alessandro.quarto@myhermessrl.com).

M. Minoia is with DEI, Politecnico di Bari, Bari, 70126, Italy (e-mail:
m.minoia@aeflab.net).

process is possible only with a digital infrastructure
equipped by computational power not owned by the small
processors used in these devices. Recently, a new computing
paradigm has been emerging promising reliable services
delivered through next generation data centers that are based
on virtualized storage technologies: cloud computing [2].
This platform plays a key role in IoT approach because it
can work:
• as receiver of data from the distributed sensors;
• as a computer to analyze and interpret the data;
• as a web based virtual interface providing services to

various users.
Intelligent Agent technology is an important and a

relatively new paradigm in software design. The term
intelligent agent is now used as an umbrella term
representing a wide range of software with different
characteristics and abilities [3]. This fact led to many
definitions of intelligent agent, but the authors agree with
the definition proposed by Wooldridge and Jennings [4]
stating that an intelligent agent is a problem-solving entity
characterized by the following properties: autonomy, social
ability, proactiveness and responsiveness.

The natural evolution of the intelligent agent technology
is the Multi Agent System (MAS) technology [5]. Systems
of this kind are composed of a set of intelligent agents
interacting and collaborating with each other to solve
complex problems that are beyond the individual capability
or knowledge of each agent. In a MAS, agents can interact
among them implementing a cooperative [6]–[8] or a
competitive strategy [9], [10].

Using these technologies (IoT and/or MAS), it is possible
to implement CPS working as autonomous networks of
miniaturized intelligent sensors and actuators integrated into
technical structures [11], [12]. Nevertheless, for practical
and economic reasons, the hardware used into these
applications is not too powerful (often small and relatively
economic devices with low computational power, storage,
power and network capabilities are used). This imposes
strong constraints to the system designers because they must
build ever more complex systems characterized by devices
with poor resources with the target of intercommunicating
so as to work as a unique and possibly autonomous system.
The analysis and validation of these systems requires
specific techniques just like bigraph as proposed in [12].

In this paper, authors describe a MAS implementing a
cooperative strategy to achieve a global objective: filling a
reactor with a mixture of liquid according to given
percentages of the various components in a wastewater
treatment plant. The proposed MAS has specific features
that are presented in [4] and in particular it has a proactive
behavior changing its strategies to react at the different
external conditions. This system has been designed and
developed as part of an innovative monitoring technique for

Bigraph Theory for Distributed and
Autonomous Cyber-Physical System Design

Vincenzo Di Lecce, Alberto Amato, Alessandro Quarto Member IAENG, Marco Minoia

C

IAENG International Journal of Computer Science, 47:1, IJCS_47_1_05

Volume 47, Issue 1: March 2020

__

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 4, APRIL 2020 2955

BigraphTalk: Verified Design of IoT Applications
Blair Archibald , Min-Zheng Shieh , Yu-Hsuan Hu, Michele Sevegnani , and Yi-Bing Lin, Fellow, IEEE

Abstract—Graphical Internet of Things (IoT) device man-
agement platforms, such as IoTtalk, make it easy to describe
interactions between IoT devices. Applications are defined by
dragging-and-dropping devices and specifying how they are con-
nected, e.g., a door sensor controlling a light. While this allows
simple and rapid development, it remains possible to specify
unwanted device configurations, such as using the same device
to drive a motor up and down simultaneously, risking damaging
the motor. We propose BigraphTalk, a verification framework
for IoTtalk that utilizes formal techniques, based on bigraphs, to
statically guarantee that unwanted configurations do not arise. In
particular, we check for invalid connections between devices, as
well as type errors, e.g., passing a float to a Boolean switch.
To the best of our knowledge, BigraphTalk is the first platform
to support the graphical specification of correct-by-design IoT
applications. BigraphTalk provides fully automated verification
and feedback without end-users ever needing to specify a bigraph.
This means that any application, specifiable in IoTtalk, is guar-
anteed, so long as verification succeeds, not to violate the given
configuration constraints when deployed; with no extra cost to
the user.

Index Terms—Application platform, bigraphs, device manage-
ment, model verification.

I. INTRODUCTION

THE Internet of Things (IoT) combines sensors, actu-
ators, and heterogeneous computing systems with the

existing Internet infrastructure [1], [2]. Unfortunately, creat-
ing IoT applications can be difficult, often relying on detailed
knowledge of low-level communication protocols [3]. Device
integration and management systems [4]–[6] abstract over
low-level protocols and are essential to allow both novice
and advanced users to benefit from the increasing availabil-
ity of IoT hardware. Several IoT solutions have been used

Manuscript received July 30, 2019; revised October 14, 2019 and December
3, 2019; accepted December 23, 2019. Date of publication January 6, 2020;
date of current version April 14, 2020. This work was supported in part
by the RSE International Exchange Programme: RSE MOST Joint Project
under Grant MOST106-2911-I-009-508, in part by the Engineering and
Physical Sciences Research Council Grant S4: Science of Sensor Systems
Software under Grant EP/N007565/1, in part by the Center for Open
Intelligent Connectivity from the Featured Areas Research Center Program
within the Framework of the Higher Education Sprout Project by the
Ministry of Education in Taiwan, in part by the Ministry of Science and
Technology under Grant 108-2221-E-009-047, and in part by the Ministry
of Economic Affairs under Grant 107-EC-17-A-02-S5-007. (Corresponding
author: Min-Zheng Shieh.)

Blair Archibald and Michele Sevegnani are with the School of
Computing Science, University of Glasgow G12 8RZ, U.K. (e-mail:
blair.archibald@glasgow.ac.uk; michele.sevegnani@glasgow.ac.uk).

Min-Zheng Shieh is with the Information Technology Service Center,
National Chiao Tung University, Hsinchu 30010, Taiwan (e-mail:
mzshieh@nctu.edu.tw).

Yu-Hsuan Hu and Yi-Bing Lin are with the Department of Computer
Science, National Chiao Tung University, Hsinchu 30010, Taiwan (e-mail:
yuxuan.cs07g@nctu.edu.tw; liny@nctu.edu.tw).

Digital Object Identifier 10.1109/JIOT.2020.2964026

to implement smart applications for a range of domains,
including home automation [7], agriculture [8], aquarium man-
agement [9], smart campuses [10], entertainment [11], art [12],
and more. While the IoT approaches in [7]–[12] allow com-
plicated applications to be developed, they provide limited
guarantees on application correctness.

Graphical IoT development provides an intuitive method for
application developers to describe the links, e.g., the dataflow
between IoT devices. For example, the IoTtalk [6] graphi-
cal user interface (GUI) describes the relationship between
sensors and actuators graphically, allowing simple data trans-
fer and transforms to occur. This approach is similar to other
model-driven engineering methods that allow structural aspects
of applications to be described [13]. Here, we focus on one
existing tool—IoTtalk—that is specialized to IoT applications.

At the heart of IoTtalk is a Web-based GUI, shown in
Fig. 1(a), that allows the users to drag-and-drop devices,
e.g., smartphone and curtain, each containing a set of input
and output device features (ODFs), e.g., acceleration, into
a workspace. Device features (DFs) can then be graphically
linked via joins—that implement data transformation and deci-
sion logic—to create an application. Other GUIs for IoT, e.g.,
WuKong [14] and Node-RED [15], describe IoT applications
using a similar network-based representation.

While IoTtalk allows the development of a wide range
of applications, it often allows too much flexibility; making
it possible to connect two devices that should never have
been connected, while providing limited guarantees of their
behavior at deployment. For example, in Fig. 1(a), we try to
simultaneously run the curtain up, down, and stop it. As each
actuator receives the same value, they will attempt to drive
the motor in different directions potentially leading to a hard-
ware damage. We call such errors a forbidden configuration.
Forbidden configurations have been observed in practice—
usually due to a lack of domain knowledge about specific
devices—and can cause incorrect or inefficient applications,
as well as potential hardware damage.

Another common error that has been observed in practice
is badly typed joins. For example, in Fig. 1(a), for Join 1
to be valid, it must convert the floating-point accelerometer
values to a Boolean for use in the curtain motor switches. If
the conversion is not performed, then we have a typecheck-
ing error. By removing the typechecking errors, we avoid
undefined behavior at deployment.

To stop users creating invalid configurations of devices,
we propose a formal verification approach for IoTtalk that
guarantees the correctness, i.e., the absence of forbidden
configurations and typechecking errors, of application deploy-
ments. While these two errors are some of the most commonly
seen errors, in practice, we aim for an extensible approach

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Udine. Downloaded on August 26,2020 at 11:03:25 UTC from IEEE Xplore. Restrictions apply.

!"#!$%&'(!
!"#$%&'

Citation: Marir, S.; Belala, F.;

Hameurlain, N. A Strategy-Based

Formal Approach for Fog Systems

Analysis . Future Internet 2022, 14, 52.

https://doi.org/10.3390/fi14020052

Academic Editor: Paolo Bellavista

Received: 13 January 2022

Accepted: 4 February 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Strategy-Based Formal Approach for Fog Systems Analysis

Souad Marir
1,2,

* , Faiza Belala
1

and Nabil Hameurlain
2

1 LIRE Laboratory, TLSI Department, Constantine 2 University, Constantine 25000, Algeria;
faiza.belala@univ-constantine2.dz

2 LIUPPA Laboratory, Universite de Pau et des Pays de l’Adour, E2S UPPA, LIUPPA, 64000 Pau, France;
nabil.hameurlain@univ-pau.fr

* Correspondence: souad.marir@univ-constantine2.dz

Abstract: Fog systems are a new emergent technology having a wide range of architectures and
pronounced needs making their design complex. Consequently, the design of fog systems is crucial,
including service portability and interoperability between the various elements of a system being the
most essential aspects of fog computing. This article presents a fog system cross-layer architecture as
a first step of such a design to provide a graphical and conceptual description. Then, a BiAgents*
(Bigraphical Agents) formal model is defined to provide a rigorous description of physical, virtual,
and behavioural aspects of Fog systems. Besides, this formalisation is implemented and executed
under a Maude strategy system. The proposed approach is illustrated through a case study: an airport
terminal Luggage Inspection System (LIS) while checking the correctness of its relevant properties:
the portability of data and their interoperability. The integration of the Maude strategies in the
rewriting of Fog system states made it possible to guide the execution of the model and its analysis.

Keywords: fog systems; BiAgents*; LTL analysis; Maude strategy

1. Introduction

Fog computing is a paradigm bridging the gap between cloud and IoT devices, en-
abling computing at the edge of the network. Thus, computation networking, decision
making, storage, and data management is made in the path between the IoT and the cloud.
The OpenFog Consortium [1] defines fog computing as a horizontal platform allowing
computing operations to be dispersed across platforms and sectors and as a vertical plat-
form that encourages isolated applications. In fact, an IoT architecture may be defined as a
superposition of layers, permitting data to be treated from the hardware to the applications
located in the cloud. However, the cloud still suffers from some limitations such as con-
nectivity, distribution, heterogeneity, and latency. Fog computing is introduced to tackle
these challenges; actually, it supports a variety of IoT applications including transportation,
agriculture, smart cities, smart buildings, healthcare, hospitality, and financial services,
just to name a few. Further, it provides effective methods to overcome many limitations of
existing computing architectures related to cloud and IoT systems. This emerging field in
computer science has induced intensive investigations and studies during the last decade.
Many researchers are working on its standardisation as the OpenFog Consortium has
established the IEEE Std 1934-2018 standard for a definition of a fog architecture and its
pillars. They met on its following main features [2,3]:

• Low latency and location awareness: Fog computing provides location awareness
by allowing fog nodes to be deployed in various places. Additionally, due to the fog
proximity to end devices, it has a reduced latency while processing data.

• Geographical distribution: Unlike the centralised cloud, the fog provides dispersed
services and applications that may be installed anywhere.

• Scalability: Fog provides distributed computing and storage resources that can handle
such massive end devices.

Future Internet 2022, 14, 52. https://doi.org/10.3390/fi14020052 https://www.mdpi.com/journal/futureinternet

Multi-agent Systems Design and Prototyping
with Bigraphical Reactive Systems!

Alessio Mansutti, Marino Miculan, and Marco Peressotti

Laboratory of Models and Applications of Distributed Systems,
Department of Mathematics and Computer Science, University of Udine, Italy

alessio.mansutti@gmail.com, {mm,marco.peressotti}@uniud.it

Abstract. Several frameworks and methodologies have been proposed
to ease the design of Multi Agent Systems (MAS), but the vast major-
ity of them is tightly tied to specific implementation platforms. In this
paper, we outline a methodology for MAS design and prototyping in the
more abstract framework of Bigraphical Reactive Systems (BRS). In our
approach, components and elements of the application domain are mod-
elled as bigraphs, and their dynamics as graph rewriting rules. Desiderata
can be encoded by means of type systems or logical formulae. Then, the
BDI agents (i.e., their beliefs, desires and intentions) are identified and
extracted from the BRS. This yield a prototype which can be run as
distributed bigraphical system, evolving by means of distributed trans-
actional rewritings triggered by cooperating agents depending on their
internal intentions and beliefs.

This methodology allows the designer to benefit from the results and
tools from the theory of BRS, especially in the requirement analysis and
validation phases. Among other results, we mention behavioural equiva-
lences, temporal/spatial logics, visual tools for editing, for simulation and
for model checking, etc. Moreover, bigraphs can be naturally composed,
thus allowing for modular design of MAS.

1 Bigraphical Reactive Systems

Bigraphical Reactive Systems (BRSs) [12] are a flexible and expressive meta-
model for ubiquitous computation. System states are represented by bigraphs,
which are compositional data structures describing at once both the locations
and the logical connections of (possibly nested) components of a system (see
Figure 1). Like graph rewriting, the dynamic behaviour of a system is defined
by a set of (parametric) reaction rules, which can modify a bigraph by replacing
a redex with a reactum, possibly changing agents’ positions and connections.

BRSs have been successfully applied to the formalization of a broad variety of
domain-specific calculi and models, from traditional programming languages to
process calculi for concurrency and mobility, from context-aware systems to web-
service orchestration languages; a non exhaustive list is [2,4,9,17]. Very recently
bigraphs have been used in structure-aware agent-based computing for modelling

! Work partially supported by MIUR PRIN project 2010LHT4KM, CINA.

K. Magoutis and P. Pietzuch (Eds.): DAIS 2014, LNCS 8460, pp. 201–208, 2014.
c© IFIP International Federation for Information Processing 2014

Gabriel Ciobanu (Ed.): Membrane Computing and
Biologically Inspired Process Calculi 2009
EPTCS 15, 2009, pp. 1–16, doi:10.4204/EPTCS.15.1

c� G. Bacci & D. Grohmann & M. Miculan
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Bigraphical models for protein and membrane interactions

Giorgio Bacci
University of Udine

giorgio.bacci@dimi.uniud.it

Davide Grohmann
University of Udine

grohmann@dimi.uniud.it

Marino Miculan
University of Udine

miculan@dimi.uniud.it

We present a bigraphical framework suited for modeling biological systems both at protein level and
at membrane level. We characterize formally bigraphs corresponding to biologically meaningful sys-
tems, and bigraphic rewriting rules representing biologically admissible interactions. At the protein
level, these bigraphic reactive systems correspond exactly to systems of k-calculus. Membrane-level
interactions are represented by just two general rules, whose application can be triggered by protein-
level interactions in a well-defined and precise way.

This framework can be used to compare and merge models at different abstraction levels; in
particular, higher-level (e.g. mobility) activities can be given a formal biological justification in terms
of low-level (i.e., protein) interactions. As examples, we formalize in our framework the vesiculation
and the phagocytosis processes.

1 Introduction

Cardelli in [8] has convincingly argued that the various biochemical toolkits identified by biologists
can be described as a hierarchy of abstract machines, each of which can be modelled using methods and
techniques from concurrency theory. These machines are highly interdependent: “to understand the func-
tioning of a cell, one must understand also how the various machines interact” [8]. Like other complex
situations, it seems unlikely to find a single notation covering all aspects of a whole organism. In fact, we
are in presence of a tower of models [19], each focusing on specific aspects of the biological system, at
different levels of abstractions. Higher-level models must be represented, or realised, at a lower level, and
where possible this representation must be proved sound; in addition, we need to combine different mod-
els at the same level. To this end, we need a general metamodel, that is, a framework, where these models
(possibly at different abstraction levels) can be encoded, and their interactions can be formally described.

In this paper, we substantiate Milner’s idea that bigraphs can be successfully used as a framework
for systems biology. More precisely, we define a class of biological bigraphs, and biological bigraphical
reactive systems (BioRS), for dealing with both protein-level and membrane-level interactions.

An important design choice is that this framework has to be biologically sound, i.e., it must admit
only systems and reactions which are biologically meaningful, especially at lower level machines (i.e.
protein). In this way, encoding a given model, for any abstract machine, as a BioRS provides automat-
ically a formal, biologically sound justification for the model (or “implementation”) in terms of protein
reactions and explains how its membrane-level interactions are realised by protein machinery.

In order to formalize this “biological soundness”, we need a formal protein model to compare to
our framework. We choose Danos and Laneve’s k-calculus, one of the most accepted formal model of
protein systems. By suitable sorting conditions, we define a bigraphical framework which allows all and
only protein configurations and interactions of the k-calculus. It is important to notice, however, that our
methodology is general, and can be applied to other formal protein models.

On the other hand, membrane nesting reconfiguration can be performed by just only two general
rules, corresponding to the natural phenomena of “pinch” and “fuse” [10]. For encoding a given mem-
brane model one has just to refine this general schema by specifying when these reactions are triggered,

ECEASST

Controlling resource access in Directed Bigraphs

Davide Grohmann
1
, Marino Miculan

2

1 grohmann@dimi.uniud.it, 2 miculan@dimi.uniud.it
Department of Mathematics and Computer Science, University of Udine, Italy

Abstract: We study directed bigraph with negative ports, a bigraphical framework
for representing models for distributed, concurrent and ubiquitous computing. With
respect to previous versions, we add the possibility that components may govern the
access to resources, like (web) servers control requests from clients. This frame-
work encompasses many common computational aspects, such as name or channel
creation, references, client/server connections, localities, etc, still allowing to derive
systematically labelled transition systems whose bisimilarities are congruences.

In order to illustrate the expressivity of this framework, we give the encodings of
client/server communications through firewalls, of (compositional) Petri nets and of
chemical reactions.

Keywords: Bigraphs, reactive systems, Petri nets, graph-based approaches to service-
oriented applications.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical framework proposed by Milner
and others [Mil01, Mil06] as a unifying theory of process models for distributed, concurrent and
ubiquitous computing. A bigraphical reactive system consists of a category of bigraphs (usually
generated over a given signature of controls) and a set of reaction rules. Bigraphs can be seen
as representations of the possible configurations of the system, and the reaction rules specify
how these configuration can evolve, i.e., the reaction relation between bigraphs. Often, bigraphs
represent terms up-to structural congruence and reaction rules represent term rewrite rules.

Many process calculi have successfully represented as bigraphical reactive systems: l -calculus
[Mil07], CCS [Mil06], p-calculus [BS06, JM04], Mobile Ambients [Jen08], Homer [BH06], Fu-
sion [GM07c], Petri nets [LM06], and context-aware systems [BDE+06]. The advantage of using
bigraphical reactive systems is that they provide powerful general results for deriving a labelled
transition system automatically from the reaction rules, via the so-called IPO construction. No-
tably, the bisimulation on this transition system is always a congruence; thus, bigraphical reactive
systems provide general tools for compositional reasoning about concurrent, distributed systems.

Bigraphs are the key structures supporting these results. A bigraph is a set of nodes (the
controls), endowed with two independent graph structures, the place graph and the link graph
(Figure 1). The place graph is a tree over the nodes, representing the spatial arrangement (i.e.,
nesting) of the various components of the system. The link graph represents the communication
connections between the components, possibly traversing the place structure. A bigraph may
be “not ground”, in the sense that it may have one or more “holes”, or sites (the gray boxes) to

1 / 25 Volume X (2008)

Security, cryptography and directed bigraphs

Davide Grohmann

Department of Mathematics and Computer Science, University of Udine, Italy

1 Spi-calculus

Syntax of spi-calculus:

a, b, c, . . . , h, k, . . . , x, y, z, . . . names N

M ::= a | {M}k | (M1, M2) messages M

⇣ ::= a | {⇣1}⇣2 | (⇣1, ⇣2) expressions Z

P ::= 0 | a(x).P | āhMi.P | P1|P2 | (⌫a)P | processes P
let (x, y) = ⇣ in P | let x = dec⇣2(⇣1) in P

Structural equivalence:

P | 0 ⌘ P P | Q ⌘ Q | P (P | Q) | R ⌘ P | (Q | R)

(⌫n)0 ⌘ 0 (⌫n)(⌫m)P ⌘ (⌫m)(⌫n)P (⌫n)(P | Q) ⌘ P | (⌫n)Q if n /2 fn(P)

Reduction semantics:

āhMi.P | a(x).Q ! P | Q{M/x} (Com)

let (x, y) = (M,N) in P ! P{M/x,N/y} (Split)

let x = deck(enck(M)) in P ! P{M/x} (Dec)

P ⌘ P
0

P
0 ! Q

0
Q

0 ⌘ Q

P ! Q
(Struct)

P ! Q

P | R ! Q | R (Par)

P ! Q

(⌫n)P ! (⌫n)Q
(Res)

2 Bigraphs

The bigraphical signature used to encode agents, keys, messages and terms is

graphically and informally described in Figure 1.

KS = {name : 1, know : 1, pair : 0, crypt : 1, get : 2, send : 2, fuse : 2, split : 3, decrypt : 3}

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Local direct bigraphs [Burco, Peressotti, M., ACM SAC 2020]

• For containers, we have introduced
local directed bigraphs, where
• Nodes have assigned a type,

specifying arity and polarity
(represented by different
shapes) and can be nested

• Sites represent “holes” which
can be filled with other bigraphs

• Arcs can connect nodes to nodes
(respecting polarities) or to
names in internal and external
interfaces (with locality)

External interface

Internal Interface

Nodes

Site

22 4. Formalizzazione dei Container come Bigrafi diretti con località

0 1 2

80 80front front back back
/var/www/data /data

wp db pma

8080 8181wp db pmafront back

datavolume

0

/var/www/data

80

80 front

lmysql

lmysql wp

0

3306

3306 front back db

0

/data

80

80 back

lmysql

lmysql pma

Figura 4.5: Esempio di composizione.

4.4.2 Condivisione di reti

Altra possibile situazione di errore è quella in cui si e�ettua una links tra due container, ma questi non
condividono nessuna rete. In questo caso dev’essere riportato un errore all’utente. L’esecuzione in questo
caso produrrebbe dei risultati inconsistenti. Docker Compose non e�ettua alcun controllo sulla verifica
di questa condizione.

Tramite bigrafi questa proprietà è verificabile garantendo che ogni container che e�ettua una links

abbia almeno un nome di rete in comune con quelli del controllo a cui si collega. Siano c e d due
controlli relativi a due container connessi da una links, netc e netd gli insiemi dei nomi delle reti di c e d,
rispettivamente. A�nché la proprietà sia garantita deve valere: netc fl netd ”= ?. Nel bigrafo è possibile
costruire questi insiemi a partire dai nodi di tipo container.

4.4.3 Gerarchia delle reti

A fini di sicurezza potrebbe risultare necessario che nel proprio sistema, in presenza di più reti, si voglia
garantire che queste non entrino in contatto, per evitare fughe di informazioni non desiderate. Un
esempio potrebbe essere quello di una scuola. Per esempio dalla rete delle aule usate dai ragazzi non
deve essere consentito accedere alla rete degli u�ci amministrativi, mentre il viceversa è lecito.

Docker Compose non o�re nessuno strumento per attuare una simile verifica. Tramite modello
bigrafico è possibile e�ettuare questo controllo. Nella sezione 6.2.2 viene presentato un algoritmo che

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Local directed bigraphs — more formally

• A (polarized) interface (with localities) is a list of pairs of finite
sets of names

• Interfaces can be juxtaposed:

3
Bigrafi diretti con località

In questo capitolo verranno introdotti i bigrafi diretti con località estendendo i concetti di bigrafo diretto
[?] e di bigrafo con località [?]. A questo scopo è necessario fissare alcune notazioni.

D’ora in avanti ci si riferirà all’operazione di unione disgiunta
v

con la seguente definizione: siano A

e B due insiemi di nomi. Ogni nome b œ B|÷a œ A, a = b subisce una rinomina (ad esempio, sia “link”
un nome presente in entrambi gli insiemi, potrebbe essere rinominato in “linkb” nel secondo insieme).
Sia B

Õ l’insieme B in seguito alle rinomine.

A ‡ B , A fi B
Õ

3.1 Categoria dei bigrafi diretti con località

3.1.1 Interfacce con località

Un’interfaccia con località X è una lista di interfacce polarizzate Xi, ognuna delle quali è definita come
una coppia di insiemi disgiunti di nomi (X+

i , X
≠
i), la coppia (X+

0 , X
≠
0) rappresenta i nomi condivisi

globalmente.

X : È(X+
0 , X

≠
0), (X+

1 , X
≠
1), . . . , (X+

n , X
≠
n)Í

X
+ ,

n›

i=1
X

+
i X

≠ ,
n›

i=1
X

≠
i width(X) , n

Notazione aggiuntiva: con X
+
i .n si intende n œ X

+
i e con X

≠
i .n si intende n œ X

≠
i .

Giustapposizione

La giustapposizione di due interfacce con località è definita come segue.

X ¢ Y , È(X+
0 ‡ Y

+
0 , X

≠
0 ‡ Y

≠
0), (X+

1 , X
≠
1), . . . , (X+

n , X
≠
n), (Y +

1 , Y
≠

1), . . . , (Y +
m , Y

≠
m)Í

3.1.2 Bigrafi diretti con località

Sia K una segnatura, c œ K, c = Èn+
, m

≠Í.

Global names Local names (a pair for each locality)

Ascending names Descending names

3
Bigrafi diretti con località

In questo capitolo verranno introdotti i bigrafi diretti con località estendendo i concetti di bigrafo diretto
[?] e di bigrafo con località [?]. A questo scopo è necessario fissare alcune notazioni.

D’ora in avanti ci si riferirà all’operazione di unione disgiunta
v

con la seguente definizione: siano A

e B due insiemi di nomi. Ogni nome b œ B|÷a œ A, a = b subisce una rinomina (ad esempio, sia “link”
un nome presente in entrambi gli insiemi, potrebbe essere rinominato in “linkb” nel secondo insieme).
Sia B

Õ l’insieme B in seguito alle rinomine.

A ‡ B , A fi B
Õ

3.1 Categoria dei bigrafi diretti con località

3.1.1 Interfacce con località

Un’interfaccia con località X è una lista di interfacce polarizzate Xi, ognuna delle quali è definita come
una coppia di insiemi disgiunti di nomi (X+

i , X
≠
i), la coppia (X+

0 , X
≠
0) rappresenta i nomi condivisi

globalmente.

X : È(X+
0 , X

≠
0), (X+

1 , X
≠
1), . . . , (X+

n , X
≠
n)Í

X
+ ,

n›

i=1
X

+
i X

≠ ,
n›

i=1
X

≠
i width(X) , n

Notazione aggiuntiva: con X
+
i .n si intende n œ X

+
i e con X

≠
i .n si intende n œ X

≠
i .

Giustapposizione

La giustapposizione di due interfacce con località è definita come segue.

X ¢ Y , È(X+
0 ‡ Y

+
0 , X

≠
0 ‡ Y

≠
0), (X+

1 , X
≠
1), . . . , (X+

n , X
≠
n), (Y +

1 , Y
≠

1), . . . , (Y +
m , Y

≠
m)Í

3.1.2 Bigrafi diretti con località

Sia K una segnatura, c œ K, c = Èn+
, m

≠Í.

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Local interfaces are everywhere

• This system has an interface (on this side) of
width=24
• Each locality (i.e. each socket) has many

wires, that is, names
• Ascending names = wires accessing

resources outside the PC
• Descending names = wires giving access to

resources inside the PC
• Each locality is for accessing external

resources (e.g. energy, mike, network,
keyboard, mouse…), or to provide access to
internal resources (e.g. PCIe), or both

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Local directed bigraphs — more formally

• A signature is a set of controls, i.e. pairs
• Each control is the type of basic components, specifying inputs

(positive part) and outputs (negative part)
• Notice: direction of arrows represents

“access” or “usage”, not “information flow”
(somehow dual to string diagrams for monoidal cats)

• Figure aside: a graph representing a system
that accesses to some internal service over x,
some external service over z,
and provides services over x,y

K = {c1, c2, …} ci = (n+
i , n−

i)

(2,1) (1,1)

(1,1)

yx

0

z

1

Outer
interface

Inner
interfacex

0 0

1

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Local directed bigraphs — more formally

• A signature is a set of controls, i.e. pairs
• Given two interfaces I, O, a local directed bigraph is

a tuple

where
• V = finite set of nodes
• E = finite set of edges
• = control map: assigns each node a type, that is

a number of inward and outward ports
• prnt: tree-like structure between nodes
• link: directed graph connecting nodes’ ports and names in

interfaces (respecting polarity)

B : I → O

B = (V, E, ctrl, prnt, link)

ctrl : V → K

K = {c1, c2, …} ci = (n+
i , n−

i)

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Local directed bigraphs — more formally

• Let K be a fixed signature, and X, Y, Z three interfaces.
• Given two bigraphs , their composition is

defined by “filling the holes and connecting the wires” as expected

• Yields a monoidal category (Ldb(K),⊗,0)

• Objects: local directed interfaces
• Arrows: local directed bigraphs
• Tensor: juxtaposition

• Enjoys nice properties of bigraphs (RPOs, IPOs, etc.)

B1 : X → Y, B2 : Y → Z
B2 ∘ B1 = (V, E, ctrl, prnt, link) : X → Z

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

A signature for containers

• Controls to represent main elements of a container

Kcont =

• shapes are only for graphical rendering
• (nodes are subject to some sorting conditions)

• Can be extended with other controls as needed
(achieving flexibility and openness)
• Changing signature = change of base in fibred category

14 4. Formalizzazione dei Container come Bigrafi diretti con località

version : ’2’
services :

wp:
image: wordpress
links:

- db
ports:

- "8080:80"
networks :

- front
volumes :

- datavolume :/ var/www/data:ro
db:

image: mariadb
expose :

- "3306"
networks :

- front
- back

pma:
image: phpmyadmin / phpmyadmin
links:

- db:mysql
ports:

- "8181:80"
volumes :

- datavolume :/ data
networks :

- back
networks :

front :
driver : bridge

back:
driver : bridge

volumes :
datavolume :

external : true

Codice 4.1: Un esempio di docker-compose.yml

(a) Container

proc

(b) Processo
(c) Richiesta

(d) Rete
(e) Volume

Figura 4.1: Rappresentazione grafica della segnatura.

process

container
request

network
volume

…

Read Write

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Containers are modeled as local directed bigraphs

• Container = local directed
bigraph whose interfaces
contain the name of the
container, the exposed ports,
required volumes and
networks, etc.
• This is not only a picture,

but the graphical
representation of two
interfaces and a morphism in
the category Ldb(Kcont)

18 4. Formalizzazione dei Container come Bigrafi diretti con località

proc1

proc2

proc3

D : px

0

s1 s2 r1 l
in
1 l

in
2

p1 p2 p3 v l
out
1 l

out
2 C n1 n2

Figura 4.3: Un esempio di bigrafo di un Container.

0 1 2

p
Õ
1 p

Õ
2C1 C2 C3netvol

p1 p2C1 C2 C3net net netvol

Figura 4.4: Esempio di bigrafo per composizione.

Nets

Container

Processes

Volume

Site

B : ⟨({}, {}), ({s1, s2, lin
1 , l in

2 }, {r1})⟩ → ⟨({}, {}, ({n1, n2, v, lout
1 , lout

2 }, {p1, p2, p3, C}))⟩

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

And composition is another bigraph

• The YAML configuration file
for docker compose
corresponds to a deployment
bigraph specifying volumes,
networks, name and port
remapping, etc.

22 4. Formalizzazione dei Container come Bigrafi diretti con località

0 1 2

80 80front front back back
/var/www/data /data

wp db pma

8080 8181wp db pmafront back

datavolume

0

/var/www/data

80

80 front

lmysql

lmysql wp

0

3306

3306 front back db

0

/data

80

80 back

lmysql

lmysql pma

Figura 4.5: Esempio di composizione.

4.4.2 Condivisione di reti

Altra possibile situazione di errore è quella in cui si e�ettua una links tra due container, ma questi non
condividono nessuna rete. In questo caso dev’essere riportato un errore all’utente. L’esecuzione in questo
caso produrrebbe dei risultati inconsistenti. Docker Compose non e�ettua alcun controllo sulla verifica
di questa condizione.

Tramite bigrafi questa proprietà è verificabile garantendo che ogni container che e�ettua una links

abbia almeno un nome di rete in comune con quelli del controllo a cui si collega. Siano c e d due
controlli relativi a due container connessi da una links, netc e netd gli insiemi dei nomi delle reti di c e d,
rispettivamente. A�nché la proprietà sia garantita deve valere: netc fl netd ”= ?. Nel bigrafo è possibile
costruire questi insiemi a partire dai nodi di tipo container.

4.4.3 Gerarchia delle reti

A fini di sicurezza potrebbe risultare necessario che nel proprio sistema, in presenza di più reti, si voglia
garantire che queste non entrino in contatto, per evitare fughe di informazioni non desiderate. Un
esempio potrebbe essere quello di una scuola. Per esempio dalla rete delle aule usate dai ragazzi non
deve essere consentito accedere alla rete degli u�ci amministrativi, mentre il viceversa è lecito.

Docker Compose non o�re nessuno strumento per attuare una simile verifica. Tramite modello
bigrafico è possibile e�ettuare questo controllo. Nella sezione 6.2.2 viene presentato un algoritmo che

14 4. Formalizzazione dei Container come Bigrafi diretti con località

version : ’2’
services :

wp:
image: wordpress
links:

- db
ports:

- "8080:80"
networks :

- front
volumes :

- datavolume :/ var/www/data:ro
db:

image: mariadb
expose :

- "3306"
networks :

- front
- back

pma:
image: phpmyadmin / phpmyadmin
links:

- db:mysql
ports:

- "8181:80"
volumes :

- datavolume :/ data
networks :

- back
networks :

front:
driver : bridge

back:
driver : bridge

volumes :
datavolume :

external : true

Codice 4.1: Un esempio di docker-compose.yml

(a) Container

proc

(b) Processo
(c) Richiesta

(d) Rete
(e) Volume

Figura 4.1: Rappresentazione grafica della segnatura.

14 4. Formalizzazione dei Container come Bigrafi diretti con località

version : ’2’
services :

wp:
image : wordpress
links :

- db
ports :

- "8080:80"
networks :

- front
volumes :

- datavolume :/ var/www/data:ro
db:

image : mariadb
expose :

- "3306"
networks :

- front
- back

pma:
image : phpmyadmin / phpmyadmin
links :

- db:mysql
ports :

- "8181:80"
volumes :

- datavolume :/ data
networks :

- back
networks :

front:
driver : bridge

back:
driver : bridge

volumes :
datavolume :

external : true

Codice 4.1: Un esempio di docker-compose.yml

(a) Container

proc

(b) Processo
(c) Richiesta

(d) Rete
(e) Volume

Figura 4.1: Rappresentazione grafica della segnatura.

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

And composition is another bigraph

• Composition of containers (as
done by docker compose)
 =
composition of corresponding
bigraphs inside the
deployment bigraph
• Encoding is “functorial”

• The model of a running
application is a bigraph
obtained by composing the
bigraphs of the components

22 4. Formalizzazione dei Container come Bigrafi diretti con località

0 1 2

80 80front front back back
/var/www/data /data

wp db pma

8080 8181wp db pmafront back

datavolume

0

/var/www/data

80

80 front

lmysql

lmysql wp

0

3306

3306 front back db

0

/data

80

80 back

lmysql

lmysql pma

Figura 4.5: Esempio di composizione.

4.4.2 Condivisione di reti

Altra possibile situazione di errore è quella in cui si e�ettua una links tra due container, ma questi non
condividono nessuna rete. In questo caso dev’essere riportato un errore all’utente. L’esecuzione in questo
caso produrrebbe dei risultati inconsistenti. Docker Compose non e�ettua alcun controllo sulla verifica
di questa condizione.

Tramite bigrafi questa proprietà è verificabile garantendo che ogni container che e�ettua una links

abbia almeno un nome di rete in comune con quelli del controllo a cui si collega. Siano c e d due
controlli relativi a due container connessi da una links, netc e netd gli insiemi dei nomi delle reti di c e d,
rispettivamente. A�nché la proprietà sia garantita deve valere: netc fl netd ”= ?. Nel bigrafo è possibile
costruire questi insiemi a partire dai nodi di tipo container.

4.4.3 Gerarchia delle reti

A fini di sicurezza potrebbe risultare necessario che nel proprio sistema, in presenza di più reti, si voglia
garantire che queste non entrino in contatto, per evitare fughe di informazioni non desiderate. Un
esempio potrebbe essere quello di una scuola. Per esempio dalla rete delle aule usate dai ragazzi non
deve essere consentito accedere alla rete degli u�ci amministrativi, mentre il viceversa è lecito.

Docker Compose non o�re nessuno strumento per attuare una simile verifica. Tramite modello
bigrafico è possibile e�ettuare questo controllo. Nella sezione 6.2.2 viene presentato un algoritmo che

4.4. Proprietà di consistenza 23

front backdatavolume

0

80

8080

lmysql

wp

1

3306

db

2

80

8181

lmysql

pma

Figura 4.6: Il bigrafo dopo la composizione.

svolge questo tipo di analisi a partire da un bigrafo modellante un file di configurazione di Docker
Compose.

22 4. Formalizzazione dei Container come Bigrafi diretti con località

0 1 2

80 80front front back back
/var/www/data /data

wp db pma

8080 8181wp db pmafront back

datavolume

0

/var/www/data

80

80 front

lmysql

lmysql wp

0

3306

3306 front back db

0

/data

80

80 back

lmysql

lmysql pma

Figura 4.5: Esempio di composizione.

4.4.2 Condivisione di reti

Altra possibile situazione di errore è quella in cui si e�ettua una links tra due container, ma questi non
condividono nessuna rete. In questo caso dev’essere riportato un errore all’utente. L’esecuzione in questo
caso produrrebbe dei risultati inconsistenti. Docker Compose non e�ettua alcun controllo sulla verifica
di questa condizione.

Tramite bigrafi questa proprietà è verificabile garantendo che ogni container che e�ettua una links

abbia almeno un nome di rete in comune con quelli del controllo a cui si collega. Siano c e d due
controlli relativi a due container connessi da una links, netc e netd gli insiemi dei nomi delle reti di c e d,
rispettivamente. A�nché la proprietà sia garantita deve valere: netc fl netd ”= ?. Nel bigrafo è possibile
costruire questi insiemi a partire dai nodi di tipo container.

4.4.3 Gerarchia delle reti

A fini di sicurezza potrebbe risultare necessario che nel proprio sistema, in presenza di più reti, si voglia
garantire che queste non entrino in contatto, per evitare fughe di informazioni non desiderate. Un
esempio potrebbe essere quello di una scuola. Per esempio dalla rete delle aule usate dai ragazzi non
deve essere consentito accedere alla rete degli u�ci amministrativi, mentre il viceversa è lecito.

Docker Compose non o�re nessuno strumento per attuare una simile verifica. Tramite modello
bigrafico è possibile e�ettuare questo controllo. Nella sezione 6.2.2 viene presentato un algoritmo che

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Application: safety checks on the configuration

When represented as bigraphs,
systems can be analysed using tools
and techniques from graph theory

Simple example:
• Valid links: “if a container has a

link to another one, then the two
containers must be connected by at
least one network”
• Corresponds to a simple

constraint on the deployment
bigraph

lmysql lmysql

22 4. Formalizzazione dei Container come Bigrafi diretti con località

0 1 2

80 80front front back back
/var/www/data /data

wp db pma

8080 8181wp db pmafront back

datavolume

0

/var/www/data

80

80 front

lmysql

lmysql wp

0

3306

3306 front back db

0

/data

80

80 back

lmysql

lmysql pma

Figura 4.5: Esempio di composizione.

4.4.2 Condivisione di reti

Altra possibile situazione di errore è quella in cui si e�ettua una links tra due container, ma questi non
condividono nessuna rete. In questo caso dev’essere riportato un errore all’utente. L’esecuzione in questo
caso produrrebbe dei risultati inconsistenti. Docker Compose non e�ettua alcun controllo sulla verifica
di questa condizione.

Tramite bigrafi questa proprietà è verificabile garantendo che ogni container che e�ettua una links

abbia almeno un nome di rete in comune con quelli del controllo a cui si collega. Siano c e d due
controlli relativi a due container connessi da una links, netc e netd gli insiemi dei nomi delle reti di c e d,
rispettivamente. A�nché la proprietà sia garantita deve valere: netc fl netd ”= ?. Nel bigrafo è possibile
costruire questi insiemi a partire dai nodi di tipo container.

4.4.3 Gerarchia delle reti

A fini di sicurezza potrebbe risultare necessario che nel proprio sistema, in presenza di più reti, si voglia
garantire che queste non entrino in contatto, per evitare fughe di informazioni non desiderate. Un
esempio potrebbe essere quello di una scuola. Per esempio dalla rete delle aule usate dai ragazzi non
deve essere consentito accedere alla rete degli u�ci amministrativi, mentre il viceversa è lecito.

Docker Compose non o�re nessuno strumento per attuare una simile verifica. Tramite modello
bigrafico è possibile e�ettuare questo controllo. Nella sezione 6.2.2 viene presentato un algoritmo che

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Application: Network separation (no information leakage)

• assume that networks (or volumes) have assigned different security
levels (e.g “public < guests < admin”, “back < front”).
• Security policy we aim to guarantee (akin Bell-LaPadula):
• “Information from a higher security network cannot leak into a

lower security network, even going through different containers”

4.4. Proprietà di consistenza 23

front backdatavolume

0

80

8080

lmysql

wp

1

3306

db

2

80

8181

lmysql

pma

Figura 4.6: Il bigrafo dopo la composizione.

svolge questo tipo di analisi a partire da un bigrafo modellante un file di configurazione di Docker
Compose.

front > back

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Application: Safe network separation
• Can be reduced to a reachability problem on an auxiliary graph representing read-write

accessibility of containers to resources

• The r/w accessibility graph is easily derived from the bigraph of the system

• Security policy is reduced to the property: “For each pair of resources m,n such that n < m,
there is no path from n to m” (i.e., n cannot access m)

• If this is the case, the configuration respects the security policy. Otherwise, an
information leakage is possible

4.4. Proprietà di consistenza 23

front backdatavolume

0

80

8080

lmysql

wp

1

3306

db

2

80

8181

lmysql

pma

Figura 4.6: Il bigrafo dopo la composizione.

svolge questo tipo di analisi a partire da un bigrafo modellante un file di configurazione di Docker
Compose.

front > back

front datavolume back

wp db pma

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

DBCChecker [Altarui, M., Paier, ITASEC 2023]

A tool aiming to verify security properties of systems
obtained by composition of containers

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

DBCChecker

• Input:
• a configuration of a container-based system (in JBF - JSON Bigraph Format)
• for each container, an abstract description of the interaction on its interface

(“contract”)
• Global properties to be checked

• Output: a model for the global system, verifiable in some backend (here, ProVerif)

DBCChecker
System description

Container contracts

Global properties to check

.pv Proverif
OK

KO, trace

Bigraphs are
used inside here

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

JSON Bigraph Format (JBF)

• Based upon the standard
JSON Graph Format (JGF).
• Uses metadata objects to

describe the signature and
other specific information
of directed bigraphs.
• This allows us to

describe the properties
that do not fit in JGF
without modifying the
format

JSON Bigraph Format (JBF)

Based upon the standard
JSONGraph Format.

Usesmetadata objects to
describe the signature and
other speci�c informations
of directed bigraphs.

An extension to the JBF
speci�cation is needed to
describe the properties that
do not �t in JGF.

� {

� "graph": {

� "nodes": {

� "NodeName": {

� "metadata": {

� "type": "type"

� },

� "label": "label"

� }

�� },

�� "edges": [

�� {

�� "source": "sourceNode",

�� "relation": "relation",

�� "target": "targetNode",

�� "metadata": {

�� "portFrom": "portFrom",

�� "portTo": "portTo"

�� }

�� },

�� {

�� "source": "sourceNode",

�� "relation": "relation",

�� "target": "targetNode",

�� "metadata": {

�� "portFrom": "portFrom",

�� "portTo": "portTo"

�� }

�� }

��],

�� "type": "type",

�� "metadata": {

�� "signature": [

�� {

�� "name": "name",

�� "arityOut": 1,

�� "arityIn": 1

�� }

��]

�� }

�� }

�� }

DBCChecker: a container checking tool Paier M. — IMT School for Advanced Studies 4/13

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

ProVerif [Blanchet, 2016]

• ProVerif is a verifier for cryptographic protocols that may prove that a
protocol is secure or exhibit attacks in the Dolev-Yao model
• Advantages
• fully automatic, and quite efficient
• a rich process algebra (based on applied π-calculus)
• handles many cryptographic primitives
• various security properties: secrecy, correspondences, equivalences

• Cons:
• the tool can say “can not be proved”
• termination is not guaranteed

• Available at http://proverif.inria.fr

http://proverif.inria.fr

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

ProVerif architecture [Blanchet, 2016]
10 Introduction

Pi calculus + cryptography Secrecy, authentication, ...

Horn clauses Derivability queries

Resolution with selection

Automatic translator

Derivation:No derivation:

Protocol: Properties to prove:

The property is true Attack at the Horn clause level

Attack reconstruction

False attack
"I don’t know"

Attack at the pi
The property is false

calculus level

Figure 1.1: Structure of ProVerif

Structure of ProVerif

The structure of ProVerif is represented in Figure 1.1. ProVerif takes as
input a model of the protocol in an extension of the pi calculus with
cryptography, similar to the applied pi calculus (Abadi and Fournet,
2001; Abadi et al., 2016) and detailed in the next chapter. It supports
a wide variety of cryptographic primitives, modeled by rewrite rules or
by equations. ProVerif also takes as input the security properties that
we want to prove. It can verify various security properties, including se-
crecy, authentication, and some observational equivalence properties. It
automatically translates this information into an internal representation
by Horn clauses: the protocol is translated into a set of Horn clauses,
and the security properties to prove are translated into derivability
queries on these clauses. ProVerif uses an algorithm based on resolution

Full text available at: http://dx.doi.org/10.1561/3300000004

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

A basic example: secure handshake

• Two containers, “client” and “server”
• Global property to check: confidentiality of message s

A basic example

Let us consider a very simple handshake protocol between two containers, a clientA
and a serverB, over a shared channel.

Global property to check: con�dentiality of s.

#0clientA serverB

clientA serverB

pkA

AEnc(pkA, Sig
n(skB, (pkB

, k)))

SEnc(k, s)

DBCChecker: a container checking tool Paier M. — IMT School for Advanced Studies 6/13

#0clientA serverB

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

A basic example: secure handshake: contracts

A basic example: contracts

� "clientA": {

� "metadata": {

� "type": "node",

� "control": "1on0",

� "params": ["pkA:pkey", "skA:skey",

"pkB:spkey"],

� "behaviour": "!(out (#0+, pkA);

in (#0+, x : bitstring);

let y = adec(x, skA) in

let (=pkB, k : key) = checksign(y,

pkB) in

out (#0+, senc(s, k))).",

� "attribute": ""

� },

� "label": "clientA"

�� }

� "serverB": {

� "metadata": {

� "type": "node",

� "control": "1on0",

� "params": ["pkB:spkey", "skB:sskey"],

� "behaviour": "!(in(#0+, pkX : pkey);

new k : key;

out(#0+, aenc(sign((pkB, k), skB),

pkX));

in(#0+, x : bitstring);

let z = sdec(x, k) in 0).",

� "attribute": ""

� },

� "label": "serverB"

�� }

DBCChecker: a container checking tool Paier M. — IMT School for Advanced Studies 7/13

#0clientA serverB

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

A basic example: secure handshake: analysis result
A trace has been found.

Honest Process Attacker

{1}new skA_2
{2}new skB_2

~M = pk(skA_2)

~M_1 = spk(skB_2)

! !

Beginning of process serverBBeginning of process clientA

~M_2 = pk(skA_2)

pk(a_1)

{17}new k_2

~M_3 = aenc(sign((spk(skB_2),k_2),skB_2),pk(a_1))

aenc(adec(~M_3,a_1),~M) = aenc(sign((spk(skB_2),
k_2),skB_2),pk(skA_2))

~M_4 = senc(s,k_2)

The attacker has the message sdec(~M_4,2-proj-2-tuple(
getmess(adec(~M_3,a_1)))) = s

#0clientA serverB

A basic example

Let us consider a very simple handshake protocol between two containers, a clientA
and a serverB, over a shared channel.

Global property to check: con�dentiality of s.

#0clientA serverB

clientA serverB

pkA

AEnc(pkA, Sig
n(skB, (pkB

, k)))

SEnc(k, s)

DBCChecker: a container checking tool Paier M. — IMT School for Advanced Studies 6/13

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

A slightly more advanced example: reconfiguration

• Two containers are communicating over a private channel.
• Global property to check: confidentiality of data.
• The system is secure (because the network is internal).
• But if we add another container, the property may not be

preserved

#0

client server

#0

client server logger#1

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Reconfiguration: contracts

#0

client server

A slightly more advanced example: contracts

� "client": {

� "metadata": {

� "type": "node",

� "control": "1on0",

� "properties": {

� "params": [],

� "behaviour": "new

data:bitstring;

out(#0-, data).",

� "events": [],

� "attribute": ""

�� }

�� },

�� "label": "client"

�� },

� "server": {

� "metadata": {

� "type": "node",

� "control": "1on0",

� "properties": {

� "params": [],

� "behaviour": "in(#0-,

data_received:bitstring).",

� "events": [],

� "attribute": ""

�� }

�� },

�� "label": "server"

�� },

� "logger": {

� "metadata": {

� "type": "node",

� "control": "2on0",

� "properties": {

� "params": [],

� "behaviour": "in(#0-,

data_toLog:bitstring);

out(#0-,

data_toLog);

out(#1+,

data_toLog).",

� "events": [],

� "attribute": ""

�� }

�� },

�� "label": "logger"

�� },

DBCChecker: a container checking tool Paier M. — IMT School for Advanced Studies 10/13

#0

client server logger#1

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Reconfiguration: analysis result
A trace has been found.

Honest Process Attacker

Beginning of process behaviour_logger
Beginning of process behaviour_client

{4}new data_1 Beginning of process behaviour_server

data_1

data_1

~M = data_1

The attacker has the message ~M = data_1

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

System modification = Bigraphic rewriting
• So far, bigraphs have been used to represent the connection configuration of a

containerized system
• Connections and positions of elements of a system can change at run-time

(connections, services requests between processes…)
• Bigraphic models represent these dynamics by means of rewriting rules
• A rule can replace/move nodes, change connections, etc…

HOW A SYSTEM MAY RECONFIGURE

L

A

K

M

. . . and how it
reconfigures

A pattern . . .

A REACTION RULE
A

L

A

K

7

. AND THE NEW CONFIGURATION

A

M

. . . and how it
reconfigures

A pattern . . .

A REACTION RULE

L

A

K

A

8

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Container system evolution: by means of rewriting rules

• A LDB Reactive System (LDBRS) is defined by a set of rules
• Given a starting configuration (= a ground bigraph), a LDBRS

induces a labelled transition system (LTS), where
• States = reachable configurations by means of rewritings
• Labels = rules applied in the rewritings (= actions)

S0 S1 S2

S3

S4

…
R1 R1

R2

R1

R1

R3

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Container system evolution: by means of rewriting rules

• Over this LTS we can verify many properties by model checking, e.g.:
• reachability and planning
• safety properties ("bad things don't happen”)
• liveness properties ("good things do happen”)

• We can verify these properties before actually applying the changes,
or to plan the correct sequence of changes

S0 S1 S2

S3

S4

…
R1 R1

R2

R1

R1

R3

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Dynamic properties: System’s runtime

• Rules can represent runtime dynamics
• Example: connection request / connection accepted

• The induced LTS represent different states that the system can reach at runtime
• Over this LTS we can verify usual temporal properties (liveness, fairness), e.g.

• Eventual success of service request
• Temporal security guarantees, eg: “if a process reads from X then it cannot

write on any Y whose security level is less than X’s”

4.2. Rappresentazione grafica 17

0

c : p

d n

0

c : p

d n

(a) Regola req exit

0

c : p

cn

0

lo : p

c n

(b) Regola req enter

1

0

l : p

l

cn

1

0

lo : p

l

cn

(c) Regola req enter alias

1

0

lo : p

p

1

0

p

(d) Regola req resolve

Figura 4.2: Regole di riscrittura

4.2 Rappresentazione grafica

4.2.1 Esempio di rappresentazione grafica singolo Container

Il bigrafo:

C : È(?+
,?≠), ({l

in
1 , l

in
2 , s1, s2}+

, {r1}≠)Í æ È(?+
,?≠), ({l

out
1 , l

out
2 , n1, n2, v}+

, {C, p1, p2, p3}≠)Í

assume la rappresentazione in figura 4.3.

4.2.2 Esempio rappresentazione grafica compositore

Il bigrafo:

C : È(?+
,?≠), ({net}+

, {C1, p1}≠), ({net, vol}+
, {C2}≠), ({net}+

, {C3, p2}≠)Í

æ È(?+
,?≠), ({net, vol}+

, {C1, C2, C3, p
Õ
1, p

Õ
2}≠)Í

assume la rappresentazione in figura 4.4.

4.3 Esempio di traduzione

Si osservi docker-compose.yml del codice 4.1. Il suo bigrafo equivalente è descritto dalla composizione
dei bigrafi wp, db, pma e cmps:

4.2. Rappresentazione grafica 17

0

c : p

d n

0

c : p

d n

(a) Regola req exit

0

c : p

cn

0

lo : p

c n

(b) Regola req enter

1

0

l : p

l

cn

1

0

lo : p

l

cn

(c) Regola req enter alias

1

0

lo : p

p

1

0

p

(d) Regola req resolve

Figura 4.2: Regole di riscrittura

4.2 Rappresentazione grafica

4.2.1 Esempio di rappresentazione grafica singolo Container

Il bigrafo:

C : È(?+
,?≠), ({l

in
1 , l

in
2 , s1, s2}+

, {r1}≠)Í æ È(?+
,?≠), ({l

out
1 , l

out
2 , n1, n2, v}+

, {C, p1, p2, p3}≠)Í

assume la rappresentazione in figura 4.3.

4.2.2 Esempio rappresentazione grafica compositore

Il bigrafo:

C : È(?+
,?≠), ({net}+

, {C1, p1}≠), ({net, vol}+
, {C2}≠), ({net}+

, {C3, p2}≠)Í

æ È(?+
,?≠), ({net, vol}+

, {C1, C2, C3, p
Õ
1, p

Õ
2}≠)Í

assume la rappresentazione in figura 4.4.

4.3 Esempio di traduzione

Si osservi docker-compose.yml del codice 4.1. Il suo bigrafo equivalente è descritto dalla composizione
dei bigrafi wp, db, pma e cmps:

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Dynamic properties: System’s reconfiguration

• Rules can represent system reconfiguration (static or dynamic), such as:
• Container replacement / update (e.g. library/code upgrade)
• Horizontal scaling:

• The induced LTS represent different configurations of the system
• “Temporal” safety invariants = stability under reconfiguration

1

service

0

11

service

0

loadbalancer loadbalancer

server server server

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Conclusions: what we have done…

• Proposed a bigraph-based formal model for container-based
systems
• Captures logical connections of components and processes,

nesting of components, composition of containers
• Basis for tools and for theoretical results
• Applicable for, e.g., static analysis of container systems
• Implemented prototype checker tool

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Conclusions: some current and future work

• Formalisation of other static properties (Spatial logics?)
• Integrate with runtime monitoring
• Generate rules for runtime monitors (see Baldo’s work)
• If we observe something unexpected, is it an error, or

reconfiguration?
• Quantitative aspects (e.g. fault probability estimation)
• Configuration synthesis or refinement (e.g. by rewriting rules

which fix security policy violation)
• Session types for specifying contracts
• Improve tools, UI/UX
• …

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

Thanks for your attention! Questions?

marino.miculan@uniud.it

mailto:marino.miculan@uniud.it

Compositional Bigraphical Models for Container-Based Systems SecurityM. Miculan

References
• [Verderame et al, 2023] L Verderame, L Caviglione, R Carbone, A Merlo. “SecCo:

Automated Services to Secure Containers in the DevOps Paradigm” Proceedings of the 2023
International Conference on Research in Adaptive and Convergent Systems

• [Milner, 2006] R Milner. "Pure bigraphs: Structure and dynamics." Information and
computation 204.1 (2006): 60-122.

• [Archibald et al, 2024] B Archibald, M Calder, M Sevegnani. “Practical Modelling with
Bigraphs.” arXiv preprint arXiv:2405.20745, 2024

• [Burco et al., 2020] F Burco, M Miculan, M Peressotti. "Towards a formal model for
composable container systems." Proceedings of the 35th Annual ACM Symposium on Applied
Computing. 2020.

• [Altarui et al., 2023] A Altarui, M Miculan, and M Paier. "DBCChecker: A Bigraph-Based Tool
for Checking Security Properties of Container Compositions." CEUR WORKSHOP
PROCEEDINGS. Vol. 3488. CEUR-WS, 2023.

• [Blanchet, 2016] B Blanchet, "Modeling and verifying security protocols with the applied pi
calculus and ProVerif." Foundations and Trends in Privacy and Security 1.1-2 (2016): 1-135.

