
MeMo 2015
2nd International Workshop on  

Meta Models for Process Languages

Grenoble, June 5, 2015
Part of DisCoTec 2015

Preface

This volume contains the papers presented at the 2nd International Workshop
on Meta Models for Process Languages (MeMo 2015) held on June 5, 2015 in
Grenoble. This edition follows the first one, which has been held at DisCoTec
2014 in Berlin.

Metamodels are framework theories aiming to provide general, structural
results simplifying and driving the development of models of specific systems
and languages. There are frameworks for operational semantics (such as GSOS,
graph rewriting systems, Milner’s bigraphs, coalgebras), for denotational seman-
tics (such as algebraic/bialgebraic specifications, monads, enriched Lawvere the-
ories, mathematical operational semantics), and for logical semantics (such as
metalanguages for deductive systems, i.e. Logical Frameworks). The boundaries
between these metamodels are blurred, and techniques and ideas from one can
be reapplied to the others.

The goal of the MeMo workshop is to bring together researchers working
on and with metamodels, with the aim to share insights, uncover similarities
and di↵erences, foster cross-fertilization and stimulate further research. Hence,
MeMo solicits contributions in the theory and applications of metamodels: the-
oretical results, tool implementations, real-world applications, case studies, new
application areas, integration of meta-models with programming languages, etc.

At MeMo 2015 we had 5 contributions overall, ranging from structural oper-
ational semantics for graph transformation systems, to modal logics for systems
with names; from the derivation of labelled transition systems from soft con-
straint systems, to applications of stochastic bigraphs to the modelization of
wireless mesh networks. The program also includes an invited talk by Michele
Loreti titled ULTraS of FuTS, which are two metamodels for labelled transition
systems with quantitative aspects.

I would like to thank the authors for their interest in MeMo, the members of
the Program Committee for reviewing the submissions, the Organizing Commit-
tee (Søren Debois and Thomas Hildebrandt) and the DisCoTec 2015 organizing
committee for their support in the organization of this workshop.

May 15, 2015
Udine

Marino Miculan
MeMo 2015 PC chair

v

Table of Contents

ULTraS of FuTS . 1
Michele Loreti

Towards a Channels Allocation Scheme Model for WMNs based on
SBRS with Sharing . 5

Rachida Boucebsi and Faiza Belala

Structured Operational Semantics for Graph Rewriting 18
Tobias Heindel and Andrei Dorman

Computing approximations for graph transformation systems 19
Ricardo Honorato-Zimmer, Tobias Heindel, Vincent Danos and Sandro
Stucki

Modal Logics for Nominal Transition Systems . 30
Joachim Parrow, Johannes Borgström, Lars-Henrik Eriksson, Ramu-
nas Gutkovas and Tjark Weber

Recovering a Labelled Semantics for Soft CCP with Local Variables 48
Fabio Gadducci and Francesco Santini

vi

33

44

62

Program Committee

Patrick Bahr Department of Computer Science, University of
Copenhagen

Iliano Cervesato Carnegie Mellon University
Vincenzo Ciancia Istituto di Scienza e Tecnologie dell’Informazione

“A. Faedo”, Consiglio Nazionale delle Ricerche, Italy
Søren Debois IT University of Copenhagen
Fabio Gadducci Dipartimento di Informatica, Università di Pisa
Tobias Heindel LFCS, University of Edinburgh
Thomas Hildebrandt IT University of Copenhagen
Marino Miculan DiMI, University of Udine
Joachim Parrow Uppsala University
Jan Rutten CWI
Pawel Sobocinski University of Southampton

vii

Submitted to:
MEMO 2015

c�Michele Loreti
This work is licensed under the
Creative Commons Attribution License.

ULTraS of FuTS

Michele Loreti
Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”

Università di Firenze
michele.loreti@unifi.it

Labeled transition systems are typically used as behavioural models of concurrent processes. Their
labeled transitions define a one-step state-to-state reachability relation. This model can be generalised
by modifying the transition relation to associate a state reachability distribution with any pair con-
sisting of a source state and a transition label. Each transition becames a triple of the form (s,↵,P).
The first and the second components are the source state, s, and the label, ↵, of the transition, while
the third component, P , is the state reachability distribution, or continuation function, associating a
value of a suitable type to each state s0. Values are taken from a preordered set equipped with a min-
imum that denotes unreachability. By selecting suitable preordered sets, the resulting model can be
specialised to capture well-known models of nondeterministic/probabilistic/stochastic processes. For
example, in the case of stochastic process algebras the value of the continuation function on s0 repre-
sents the rate of the negative exponential distribution characterising the duration/delay of the action
performed to reach state s0 from s. This uniform treatment of di↵erent behavioural models extends
to behavioural equivalences. They can be defined by relying on appropriate measure functions that
express the degree of reachability of a set of states when performing multi-step computations. A uni-
fying framework to provide the semantics of process algebras, including their quantitative variants,
can be also defined.

Process algebras (see [1] and references therein) have been successfully used in the last thirty years to
model and analyse the behaviour of concurrent systems. Apart from specific syntactic operators used to
define the term algebra, the basic ingredients of these formalisms are the model called labeled transition
system (LTS) [13] and behavioural relations in the form of equivalences or preorders. By exploiting the
structural operational semantic approach [15], an LTS is compositionally associated with each term and
behavioural relations over LTS models are introduced to compare process terms describing systems at
di↵erent levels of abstraction and to investigate properties of interest.

Initially, process algebras were mainly designed to model and assess functional behaviours. However,
it was soon noticed that other aspects of concurrent systems are at least as important as the functional
ones. Thus, many variants of process algebras have been introduced to take into account quantitative
aspects of concurrent systems. There have been proposals of (deterministically) timed process algebras,
probabilistic process algebras, and stochastic(ally timed) process algebras, whose semantics have been
rendered in terms of richer LTS models quotiented with appropriate behavioural relations.

In order to provide a uniform account of di↵erent fully stochastic calculi, in [7], a variant of LTSs,
namely Rate Transition Systems (RTSs), have been proposed. This model is inspired by the approach
taken when modelling probabilistic systems via probabilistic automata, where operators derived from
those of the process calculi are applied to probability distributions, as e.g. in [10]. In LTSs, a transition
is a triple (P,↵,P0) where P is the source state, ↵ is the label of the transition, and P0 is the target state
reached from P via ↵. On the other hand, in RTSs a transition is a triple of the form (P,↵,P), whose
first and second component are again the source state and the transition label, but the third component
P is the continuation function that associates a real non-negative value with each state P0. A non-zero
value represents the rate of the exponential distribution characterising the time needed for the execution

2 ULTraS of FuTS

of the action represented by ↵, necessary to reach P0 from P via the transition. Whenever P(P0) = 0,
P0 is not reachable from P via ↵. RTS continuation functions are equipped with a rich set of operations
which make RTSs particularly suitable as a framework for the compositional definition of fully stochastic
calculi.

In [8] a generalisation RTSs [7], named State to Function Labeled Transition Systems, FuTSs for
short, has been proposed. FuTSs have generic commutative semi-rings, and not just the set of non-
negative reals, as co-domain of continuation functions. The semi-ring structure of the co-domain pre-
serves basic properties of primitive operations like sum and multiplication, which prove very useful when
modelling composition of rates resulting from (parallel, non-deterministic, sequential) process composi-
tions. Continuation functions are equipped with a rich set of (generic) operations, making FuTSs very
well suited as a semantic domain for the compositional definition of the operational semantics of process
calculi. FuTSs thus support a uniform and systematic understanding of similarities and di↵erences of the
many stochastic calculi proposed in the literature [8].

In [3], another step in the direction of a uniform characterisation of the semantics of di↵erent process
calculi by developing a generalisation of RTS models. The model proposed in [3] is called ULTraS from
Uniform Labeled Transition Systems. Its transition relation associates with any pair of source state and
transition label (s,a) a function D mapping each possible target state into an element of the support D
of a preordered set equipped with a minimum denoted by ?D. Given a transition s

a�!D, the value of
D(s0) expresses the degree of one-step reachability of s0 from s via that a-transition; ifD(s0) = ?D then
s0 is not reachable from s via that a-transition.

The ULTraS model can be used to capture di↵erent classes of processes by appropriately choosing D.
In particular, we will see that we capture:

1. Fully nondeterministic processes, if D is the support set B = {?,>} of the traditional Boolean
algebra.

2. Fully probabilistic processes and processes combining nondeterminism and probability, if D =
R[0,1].

3. Fully stochastic processes and processes combining nondeterminism and stochasticity, if D = R�0.

Modelling state transitions and their annotations is only one of the key ingredients of the description
of concurrent processes. One must also combine single transitions into computations and find out ways
for determining when two states give rise to behaviourally equivalent computation trees. In [3], the three
major approaches to the development of behavioural equivalences are considered and used to define
bisimulation, trace, and testing equivalences for the ULTraS model.

An important component of definitions of the three equivalences for ULTraS is a measure function
MM(s,↵,S 0) that returns elements of the support M of another preordered set equipped with a minimum.
This function computes the degree of multi-step reachability of a set of target states S 0 from a source
state s when performing computations labeled with the sequence of actions ↵. To capture classical
equivalences for the di↵erent classes of processes, di↵erent measure functions are needed:

1. For nondeterministic processes, the measure of a computation from s to S 0 labeled with ↵ is > if
the computation exists and ? otherwise.

2. For probabilistic processes, the measure function yields a value in R[0,1] that represents the proba-
bility of the set of computations from s to S 0 labeled with ↵.

3. For stochastic processes, to capture the di↵erent equivalences proposed in the literature, one has
to distinguish two cases:

Michele Loreti 3

• In the end-to-end case, given a time threshold t 2 R�0, the measure function yields a value in
R[0,1] that represents the probability that the set of computations labeled with ↵ leads from s
to S 0 within t time units.
• In the step-by-step case, given a sequence of time thresholds ti 2 R�0, the measure function

yields a value in R[0,1] that represents the probability that the set of computations labeled
with ↵ leads from s to S 0 within ti time units for each step i.

One of the main objectives of [3] was to asses the di↵erent choices that have been presented in
the literature in the last twenty years for generalising behavioural equivalences over LTS models to
richer models. It is interesting to see which of them are naturally captured by ULTraS and which ones
need, instead, an ad hoc treatment. One can then observe that, as long as only models that deal with
purely nondeterministic, purely probabilistic, or purely stochastic processes are considered, the known
(and generally accepted) equivalences are directly captured. For models that combine probability or
stochasticity with nondeterminism, the situation is less straightforward. There are many di↵erent ways
of interpreting such combinations that influence the way behavioral equivalences are defined, leading to
an explosion of potential approaches.

Interestingly enough, for mixed processes ULTraSs lead to new equivalences that were not known
in the literature. More precisely, the variant of probabilistic bisimulation equivalence, which has been
studied in [5], has a strong connection with PML, the simple probabilistic extension of Hennessy-Milner
logic that is in agreement with probabilistic bisimilarity for probabilistic processes without internal non-
determinism [14]. In contrast, the probabilistic bisimulation equivalence in [18] corresponds to a much
richer modal logic with a specific operator for capturing probability measures of states reachability [11].
Moreover, the variant of probabilistic testing equivalence, which has been studied in [2, 4], is a conser-
vative extension of the nondeterministic testing equivalence in [6] also when both nondeterministic and
probabilistic tests are used, and implies probabilistic trace equivalence also under deterministic sched-
ulers. This is not the case with the probabilistic testing equivalences in [19, 12, 17, 9]. Finally, the
variant of probabilistic trace equivalence, which has been studied in [2, 4], is a congruence with respect
to parallel composition, while the probabilistic trace equivalence in [16] is not compositional.

References

[1] J.A. Bergstra, A. Ponse & S.A. Smolka (editors) (2001): Handbook of Process Algebra. Elsevier.
[2] M. Bernardo, R. De Nicola & M. Loreti (2012): Revisiting Trace and Testing Equivalences for Nondetermin-

istic and Probabilistic Processes. In: Proc. of the 15th Int. Conf. on Foundations of Software Science and
Computation Structures (FOSSACS 2012), LNCS 7213, Springer, pp. 195–209.

[3] Marco Bernardo, Rocco De Nicola & Michele Loreti (2013): A uniform framework for modeling nondeter-
ministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences. 225, pp. 29–82,
doi:10.1016/j.ic.2013.02.004. Available at http://dx.doi.org/10.1016/j.ic.2013.02.004.

[4] Marco Bernardo, Rocco De Nicola & Michele Loreti (2014): Revisiting Trace and Testing Equivalences for
Nondeterministic and Probabilistic Processes. 10, doi:10.2168/LMCS-10(1:16)2014. Available at http:
//dx.doi.org/10.2168/LMCS-10(1:16)2014.

[5] Marco Bernardo, Rocco De Nicola & Michele Loreti (2015): Revisiting bisimilarity and its modal logic for
nondeterministic and probabilistic processes. Acta Inf. 52(1), pp. 61–106, doi:10.1007/s00236-014-0210-1.
Available at http://dx.doi.org/10.1007/s00236-014-0210-1.

[6] R. De Nicola & M. Hennessy (1984): Testing Equivalences for Processes. Theoretical Computer Science 34,
pp. 83–133.

4 ULTraS of FuTS

[7] R. De Nicola, D. Latella, M. Loreti & M. Massink (2009): Rate-based Transition Systems for Stochastic
Process Calculi. In Albers S., A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas & W. Thomas, editors:
Automata, Languages and Programming. Part II, LNCS 5556, Springer-Verlag, pp. 435–446. ISBN 978-3-
642-02929-5.

[8] Rocco De Nicola, Diego Latella, Michele Loreti & Mieke Massink (2013): A uniform definition of stochastic
process calculi. ACM Comput. Surv. 46(1), p. 5, doi:10.1145/2522968.2522973. Available at http://doi.
acm.org/10.1145/2522968.2522973.

[9] Y. Deng, R.J. van Glabbeek, M. Hennessy & C. Morgan (2008): Characterising Testing Preorders for Finite
Probabilistic Processes. Logical Methods in Computer Science 4(4:4), pp. 1–33.

[10] Y. Deng, R. van Glabbeek, M. Hennessy, C. Morgan, & C. Zhang (2007): Characterising testing preorders
for finite probabilistic processes. In: IEEE Symposium on Logic in Computer Science, IEEE, Computer
Society Press, pp. 313–325.

[11] H. Hermanns, A. Parma, R. Segala, B. Wachter & L. Zhang (2011): Probabilistic Logical Characterization.
Information and Computation 209, pp. 154–172.

[12] B. Jonsson & W. Yi (1995): Compositional Testing Preorders for Probabilistic Processes. In: Proc. of the
10th IEEE Symp. on Logic in Computer Science (LICS 1995), IEEE-CS Press, pp. 431–441.

[13] R.M. Keller (1976): Formal Verification of Parallel Programs. Communications of the ACM 19, pp. 371–
384.

[14] K.G. Larsen & A. Skou (1991): Bisimulation Through Probabilistic Testing. Information and Computation
94, pp. 1–28.

[15] G.D. Plotkin (2004): A Structural Approach to Operational Semantics. Journal of Logic and Algebraic
Programming 60/61, pp. 17–139.

[16] R. Segala (1995): A Compositional Trace-Based Semantics for Probabilistic Automata. In: Proc. of the 6th
Int. Conf. on Concurrency Theory (CONCUR 1995), LNCS 962, Springer, pp. 234–248.

[17] R. Segala (1996): Testing Probabilistic Automata. In: Proc. of the 7th Int. Conf. on Concurrency Theory
(CONCUR 1996), LNCS 1119, Springer, pp. 299–314.

[18] R. Segala & N.A. Lynch (1994): Probabilistic Simulations for Probabilistic Processes. In: Proc. of the 5th
Int. Conf. on Concurrency Theory (CONCUR 1994), LNCS 836, Springer, pp. 481–496.

[19] W. Yi & K.G. Larsen (1992): Testing Probabilistic and Nondeterministic Processes. In: Proc. of the 12th Int.
Symp. on Protocol Specification, Testing and Verification (PSTV 1992), North-Holland, pp. 47–61.

Submitted to:

MeMo 2015

c⃝ Rachida Boucebsi , Faiza Belala

This work is licensed under the

Creative Commons Attribution License.

Towards a Channels Allocation Scheme Model for WMNs

based on SBRS with Sharing

Rachida Boucebsi Faiza Belala
LIRE Laboratory, Constantine2-Abdelhamid Mehri University, Algeria

rachidaboucebsi@gmail.com faiza.belala@univ-constantine2.dz

The use of formal methods is an effective means to improve the reliability and the capacity of Wire-
less Mesh Networks. Indeed, the novel technology of WMNs does not deny some limitations im-
posed by their wireless multi-hop nature. The purpose of this work is to adapt one of these methods
to model the WMNs, so that the routing algorithms development, related to this network kind can
benefit from it. We propose a formal semantic framework, based on the Stochastic Bigraphical Re-
active Systems with sharing (SBRS with sharing), for modeling all entities of the WMN network
topology on the one hand, and an efficient and analyzable channel allocation process (CA), in a
multi-interfaces/multi-channels environment, on the other hand. Thus, we lean on SBRS model to
give a precise and sufficient semantics to WMNs. We gather together the nodes that interfere, ex-
ploiting the SBRS features, as the Parent function and the nodes sharing, then we elaborate a set of
reaction rules, labeled with rates that express stochastic evolutions of the WMN network while run-
ning the CA algorithm. Moreover, our formal model is executed and simulated under the BigraphER
environment dedicated to the verification and the simulation of the specified systems.

1 Introduction

Wireless Mesh Networks (WMNs) is an emerging wireless technology which attracts more and more

attention of service providers and enterprises, they constitute a very pleasant support for communica-

tion due to their flexibility, ease of deployment and minimized costs. Besides, they provide a means of

communication for a variety of applications with different service quality requirements in terms of delay,

throughput, reliability, confidentiality, etc. In particular, WMNs deployment can cover a wide networks

area. They are used to connect multiple LANs wireless; only availability of routers is required. Thus,

several wireless technologies support this type of communication, for instance, IEEE802.11 (for Wire-

less Local Area Networks, WLAN), IEEE802.15.4 (for Wireless Personal Area Networks, WPAN) and

IEEE802.16 (for Wireless Metropolitan Area Networks, WMAN). This network type has a mesh archi-

tecture where all routers are connected with no central hierarchy. Each node may act as sender, receiver

or relay. Thus, every communication between a source node and a destination one is done through mul-

tiple hops. WMNs form two-tier architecture, which is mainly compound of Mesh routers, Mesh clients

and Mesh Gateways, see Figure 1.

Thanks to independent Mesh routers organization, these entities can form a mesh backbone networks

(Backbone). In addition, they maintain the network connectivity and perform the routing process. Gen-

erally, Mesh routers are equipped with several radio interfaces for their connection and one interface for

the devices connecting. A Mesh router equipped with a bridge Getaway may include several network

accesses, such as the Internet network.

Although WMNs have many advantages, several problems persist, such as the security problem, the

routing one and the quality of service (QoS), etc. Therefore, this network type does not suffer from

2 Towards Channels Allocation Scheme Model for WMNs based on SBRS with Sharing

Figure 1: A Generic Architecture of WMN

typical problems often encountered in the other wireless networks as energy consumption for sensor net-

works and mobility for MANET ones. However, as they are multi-hop wireless networks, they invoke

other problem kinds, mainly the interference issue which affects their performances and causes the flow

degradation and the node overloading. This phenomenon is undesirable since it affects directly the com-

munications occurring in the same area and on the similar or converged channels.

To tackle this problem, some existing works opt to use multiple radio interfaces and multiple channels on

one hand, and duplicate paths between the source and the destination nodes to spread data traffic across

multiple paths, on the other hand. But, we should note that two neighboring nodes cannot communicate

unless their radios share the same channel. However, the reuse of the same channel in a neighborhood

must be limited. Simultaneous transmissions on the same channel may cause collisions and lead to

throughput degradation. Indeed, in an interference range, all links using the same channel, cannot trans-

mit at the same time and should not share the same channel capacity.

In order to improve the WMNs capacity, several researches are currently conducted regarding the channel

assignment when the routing is performed. We have already proposed in [18] an extended routing pro-

cess taking the channels allocation in WMNs as a central key for minimizing the interference. Validation

and analysis of the most existing approaches are based on simulation and test bed experiments. Although

these methods are important and valuable for protocol evaluation, they still remain limited, they are very

expensive in term of time consuming and are not exhaustive. Therefore, no general guarantee can be

given about protocol behavior for a wide range of unpredictable deployment scenarios.

The use of formal methods is an effective means to improve the reliability and the capacity of Wireless

Mesh Networks. They may provide valuable design tools and contribute to the evaluation and the veri-

fication of routing protocols. This paper adopts an extension of Bigraphical Reactive Systems (BRS, in

short) [13] as a semantic framework for specifying WMNs topology and channel assignment during the

routing process. For this purpose, Stochastic Bigraphs with Sharing [21] seem more appropriate than

ordinary bigraphs since they are able to define spatial overlapping locations.

6

Rachida Boucebsi , Faiza Belala 3

In a previous work [19], we have shown that graphical aspect and rigorous basis of ordinary BRS are

suitable for representing both locality and connectivity of routers and channels in WMNs during their

reconfiguration process. We aim in this paper, to improve our model in order to preserve the WMNs

main features, as the multi-hop and the overlapping of channels. We elaborate a Stochastic BRS with

sharing model, called BiS-WMN*, to formally describe the network topology and its behavior while

dealing with channel allocation during the routing process. Networks and their paths are represented as

nodes of the Topology root, and channels with their eventual interferences represent the sharing nodes

belonging to another distinctive root (called Interference root). Then, stochastic reaction rules, labeled

with rates, define possible evolution and reconfiguration of these WMN entities. Moreover, a bigraphical

simulation engine (BigraphER tool [20]) may be applied to execute and simulate our obtained model.

The rest of the paper is organized as follows. In section 2, we present related work. In section 3, we

give a brief overview on Bigraphical Reactive Systems (BRS) and their relevant extensions. Section 4

presents our bigraphical specification of WMN networks. In section 5, we show how we encode and ex-

ecute our bigraphical model with BigraphER tool. Finally, some concluding remarks and ongoing work

round up the paper.

2 Related work

Using formal methods in WMNs context is relatively new, but it may have a great benefit and help in this

concern. Some formalisms, such as Process Algebra and Petri nets, have been proposed to solve specific

problems of WMNs. In [4], authors gave a process algebra based model, called AWN (Process Algebra

for Wireless Mesh Networks) to specify WMNs routing protocols, hence it is about the AODV (Ad hoc

On Demand Distance Vector) core. This result (AWN) was also used in [7] to prove that the sequence

number cannot guarantee the non-existence of loops in protocols. In this context, further works [3], [15],

[16] have resumed this formalism to model-check, respectively AODV and AODVv2 routing protocols,

but in the context of WMN, with UPPAAL and SMC-UPPAAL tools.

The same routing protocol versions are also formally analyzed by [9] and [11] using Colored Petri Nets.

This formalism has also been used by [8] to verify the safety of WMNs, solving some attack kinds, like

e.g. ”Black hole attack”.

The above-cited works address neither the channels allocation nor the multi-path routing in the multi-

radio WMNs context. In addition, both types of the used formalisms have been integrated in the Bigraph

theory [12]. As a result, we contribute here by providing a generic BRS-based model in order to specify

and analyze WMNs topology and their inherent behaviors, while insisting on channels allocation pro-

cess. Indeed, the adopted formalism (Stochastic Bigraphical Reactive Systems with sharing) seems very

appropriate and able to represent both locality and connectivity in WMN networks. It gives a formal

meaning to all WMNs entities (signal, nodes, packets, etc.), and it allows us to attribute a rate to the

reaction rule in order to control their application during the channel allocation process.

3 Bigraphs presentation

Bigraphical Reactive Systems (BRS) theory was developed by Robin Milner [17] to model and analyze

the distributed mobile code. The BRS is simply a bigraph (a graph type) equipped with reaction rules. A

bigraph results from two merged graphs, places graph and links graph (Figure 2). Places graph specifies

the nodes hierarchy (nested locality of components) while the links graph represents the connections

between these nodes.

7

4 Towards Channels Allocation Scheme Model for WMNs based on SBRS with Sharing

Figure 2: Anatomy of an ordinary bigraph

A bigraph may contain the following elements: roots (regions), nodes, sites, edges, ports, inner and

outer names (see Figure 2). Links graph encloses nodes and edges, where each edge connects two or more

node ports. Place graphs are contained inside regions and may also contain sites that can be replaced by

a region or another bigraph. A node can have ports, seen intuitively as points for link connections. Ports

are assigned to nodes by controls which define the arity of a node (the number of ports). A set of controls

is called a signature. The wide use of BRS in various application areas has prompted the founders of this

theory to expand it in several ways.

• Binding Bigraphs [22] are proposed to introduce the full independence relaxation of placing and

linking notions, i.e. some links possess a locality concept in a bigraph. For instance, an edge

bounded to a given node can only link ports that lie within this node.

• Directed Bigraphs [5], this extension aims to assign a direction to edges for detecting the resource

request flow. For this case, edges are considered as resources and names as resources requests.

• Stochastic BRSs (SBRS) [10] associate rates to rewrite rules allowing deriving the rule activities

on a given bigraph. Therefore, the state space generated by a SBRS can be naturally transformed

into a Continuous Time Markov Chain (CTMC), so a quantitative analysis can be achieved through

tools as the stochastic model checker PRISM.

• Bigraphs with Sharing [21] is a novel generalization of Milners bigraphs in which two or more

parents nodes may share the same child ”node”. So, the parent relation forms a DAG, and not a

generic graph. therefore, the locality notion is updated. As a consequence, places graph has been

changed to support this sharing and the parent mapping is a binary relation instead of a function.

This modification is sufficient to allow places to have zero or more parents.

In this paper, we are interested in a combination of the two later extensions of BRS. The Stochastic

Bigraphical reactive systems with sharing (SBRS with sharing) have been proposed initially by Muffy

Calder and Michele Sevegnani [14], then expanded with priorities to give a spatial order to reaction rules

(PSBRS with sharing).

4 Our Approach

In this section, we focus on how the BRS are able to define both static and dynamic aspects of WMNs.

First, we need to define the topology (static aspect) and the interference aspects. This later represents the

referred problem that we want to minimize by designing a channel allocation process (dynamic aspect)

8

Rachida Boucebsi , Faiza Belala 5

thanks to the reaction rules. The routers and the channels localities may be defined by Places and Links

graphs respectively. The reactions rules model the channels allocation, given a set of links forming

the path between a source router and a destination one. We assume that all the routers have the same

number (two, 2) of radio interfaces and the channel allocation process concerns only one path, i.e, we

are interested here by the intra-flow interference. We propose in what follows the Stochastic BRS-based

specification of WMNs, called BiS-WMN* (Bigraph with Sharing for Wireless Mesh Networks).

4.1 WMN Topology Model

The general topology of a WMN is defined through one bigraph root (Topology root) of the BiS-WMN*

model , the second root (Interference) and some stochastic reaction rules are designed to support the

channel allocation process during routing. Particularly, we give a corresponding rules set (see Table 1) for

abstracting the most important elements of a WMN network in the bigraph with sharing syntax. Then, we

use this abstraction to associate a formal semantics to a WMN topology consisting of several fixed routers

and mobile channels. Each router has two radio interfaces which represent the communication means

of a router via its channels. Thus, we identify a bigraph definition consisting of two roots: Topology

and Interference. The first root (see Figure 3) contains the nodes: Network, Path, RGRi (to specify

a router range), C0 (represents the signal availability between two routers), IIP (Interference-Inside-

Path) and a set of routers as links (ri), related to RGRi nodes. The Interference root includes:IC nodes

(interference for a given channel), each one (ICi) nests a set of the Ci non-orthogonal channels. This

bigraphical structure (see Figure 3), which is independent of the WMN topology, is added to support the

specification of the channel allocation process. This latter is mainly based on the CA algorithm proposed

in [18]. We resume the IEEE.802.11 standard and reduce the channels number to eight (8) in order to

facilitate the readability of the figure. We note that the channel interference in this standard is limited to

two posterior/anterior adjacent channels. For example, the channel of number 6 interferes with its two

successors channels: 7,8 and its two previous ones: 5,4

Figure 3: The bigraph of BiS-WMN* model

Places graph (Figure 4) in this case contains two trees that represent the hierarchical nesting of

the various nodes, for example, a path (Path) is located within a Network node, etc. Note that in the

Interference root tree, each ICi node is attached to a set of channels that interfere with channel Ci, i.e.,

{Ci-2, Ci-1, Ci+1, Ci+2}, except for channels end of the standard (C1 and C8 in our case). Indeed, the

ICi node type can share some Ci nodes to avoid the nodes duplicating, while the link graph (Figure 5)

9

6 Towards Channels Allocation Scheme Model for WMNs based on SBRS with Sharing

shows the possible relationships between these entities. We identify, for instance the links ri (routers)

between the RGRi nodes and Cil between ICi and Ci nodes, etc.

Figure 4: Places graph Figure 5: Links graph

4.2 Channel Allocation Process Modeling

Given the above WMN static part modeling based on the bigraph with sharing formalism, to specify

a rational Channels Allocation process (CA) which minimize the problem of interference between the

used channels, we need to define a set of reaction rules (see last line of Table 1) ensuring the multi-radio

WMN network evolution (dynamic part). Specifically, this paper contribution allows decorating each

reaction rule by a rate expressing stochastic evolution of the network. Mainly, we conceive the following

four meta-rules that will be applied on the bigraph Topology regarding its Interference root.

• Meta-rule 1: the selected channel Ci for a given path is initially hosted inside the RGRi node

replacing the C0 node. The first reaction rule in Figure 11 illustrates a simple instantiation of this

meta-rule where the Topology root contains three routers, and four available channels (Interference

root) with possibly interference of one channel (after and before) each one. This rule may have the

simplest rate, because at time t=0, this is the only relevant rule.

• Meta-rule 2: allows pursuing this type of channels assignment (Meta-rule1) while achieving the

interference verification (Meta Rule3). The second reaction rule in Figure 11 illustrates its in-

stantiation in the same example. The rate of this rule is calculated on the basis of the chan-

nels frequencies, i.e., the current channel frequency (f x) and a given available channel frequency

(f y) : ρ(f x, f y) = (f y− f x)/p . Where p is the interference interval defined between channels (in

our case p =2).

• Meta-rule 3: checks if the interference between channels of a given path exists, thus the IIP node

receives both concerned nodes RGRi and RGRj as indicated in the third reaction rule of Figure 11.

Then, the rate of this rule is: ρ(f x, f y) = (f y)/(p+ f x) .

• Meta-rule 4: must be applied when the channel interference problem is caused, it replaces the

latest allocated channel by its successor, and it transits IIP node to its first state as in the fourth

reaction rule of Figure 11. The rule rate is defined as follows: ρ(f x, f y) = (f y)/(p+ f x) .

The use of rates guides the evolution process avoiding the use of all the declared rules. In the final step

of this formalization approach, we summarize our modeling approach by defining a formal meaning to all

10

Rachida Boucebsi , Faiza Belala 7

WMN Concepts Bigraph-based Abstract Syntax

Topology Topology root

Interference definition Interference root

Range Nodes RGRi ∈ VBiS-WMN , such that : PrntBiS-WMN

(RGRi)=Pathj ∪ Network

Path Nodes Pathi ∈ VBiS-WMN , such that : PrntBiS-WMN (Pathi) =Net-

work

Interference inside path Node IIP ∈ VBiS-WMN , such : PrntBiS-WMN(IIP)= Path

Channel Nodes Ci ∈ VBiS-WMN, such that : PrntBiS-WMN(Ci) = ICi ∪
RGRi

Network Nodes Network ∈ VBiS-WMN, such that : PrntBiS-WMN(Network)

= Topology root

Channels overlapping Nodes ICi ∈ VBiS-WMN, such that : PrntBiS-WMN (ICi)= Inter-

ference root

Router Link ri ∈ EBiS-WMN

Relationship between a channel

Ci and the interfering channels

set or also the Path in which it

will be attached

Link Cil ∈ EBiS-WMN

Hosting a channel location in-

side a range area

Node C0 ∈ VBiS-WMN , such : PrntBiS-WMN (C0)= RGRi

Channel Allocation process The reaction rules set that defines the deployment of a node

Ci belonging to the Interference root inside a node RGRj of

the Topology root

Table 1: Mapping WMN concepts to Stochastic BRS with sharing Elements

WMN entities (see Table1) and their possible reconfigured states when dealing with Channels Allocation

algorithm (the four meta-rules application). The entire semantics assigned to a WMN network in the case

of our study (CA) is given by the following definition.

Definition 1: We associate a Stochastic BRS with sharing based model, BiS-WMN* to each WMN

network in evolution, consisting of a bigraph BS and a set of reaction rules SR. Where,

BS= (VBiS-WMN,EBiS-WMN,ctrlBiS-WMN,GPBiS-WMN,GLBiS-WMN,PTBiS-WMN) : (m, φ) → (2, φ), and SR is a set of

stochastic reaction rules obtained by instantiating the four meta-rules defined below.

• VBiS-WMN = {RGR, C, IC, C0, Network, Path, IIP}, it includes all node types of the WMN network

bigraph.

• EBiS-WMN = { ri , Cil}, is a set of links; where ri represents a router, Cil is a link connecting a channel

Ci with its ICi interference node, or with the Path node if this channel is selected as the first channel

in the concerned path.

• ctrlBiS-WMN: VBiS-WMN→ K, assigns kinds (types) to all nodes, K = {Ci (1, atomic), C0 (0, atomic),

ICi: (1, composite), RGRi: (2, composite), Network: (0, composite), Path: (1, composite), IIP (0,

composite)}.

11

8 Towards Channels Allocation Scheme Model for WMNs based on SBRS with Sharing

• GPBiS-WMN et GLBiS-WMN , are respectively places and links graphs where : GPBiS-WMN= (VBiS-WMN , ctrlBiS-

WMN , prntBiS-WMN) : m →2. GLBiS-WMN= VBiS-WMN ,EBiS-WMN ,ctrlBiS-WMN , linkBiS-WMN): φ → φ . In our case

XBiS-WMN and YBiS-WMN are empty, it is about a closed bigraph.

• linkBiS-WMN: PBiS-WMN→ EBiS-WMN is an application that shows the data flow from the ports set: PBiS-WMN

to the edges set: EBiS-WMN.

• prntBiS-WMN = {(Topology, Network), (Network, Path), (Network, RGRi), (Path, RGRj), (Path, IIP),

(IIP, RGRi), (Interference, ICk), (ICk, Ck), (RGRi , C0), (RGR, Ci)}, is a binary relation which

associates each node to its hierarchical parents.

• PBiS-WMN = PC ∪ PIC∪ PPT ∪ PRG ∪ PIIP avec PC = {ICiP}, PIC= {CiP}, PPT={CP}, PIIP =

{IIPP},PRG = {R1iP, R2jP}, thus we associate one type for each port.

We note that: (m, φ) and (2,φ) define the bigraph interfaces, where m is the number of the used

sites, in our case it is equal to the number of nodes IIP. It is obvious to note also that the regions number

is fixed to two (2).

5 BiS-WMN* Model Execution

Figure 6: Architecture of the command-line tool. The modules are represented by the boxes within the

dotted box. Unlabeled arrows show the dependency relation between the modules.

Figure 7: Bigraph signature declaration

A set of practical tools are developed around BRS models in order to manipulate, execute and ana-

lyze the bigraphical systems. The most known ones are: BPL Tool [1], Big Red [2] and BigMc [6].

BigraphER (Bigraph Evaluator and Rewriting) [20] is a recent tool that implements BRS-based model

and Stochastic BRS-based model too, it supports places graph with sharing. BigraphER is composed of

12

Rachida Boucebsi , Faiza Belala 9

Figure 8: Stochastic reaction rule

Figure 9: Initial bigraph

an OCaml library and a command-line tool. This later uses data structures that OCaml library provides

for their programming interfaces. Command-line tool (Figure 6) [21] contains a compiler, a matching

engine and a rewriting engine. The tool input is a model specification written in BigraphER specification

language. However, the output can be textual or a graphical representation of the bigraph. Moreover, the

tool may offer a graphical representation of each state. This result is obtained thanks to rewriting engine

that builds a graph by iteratively applying the reaction rules to each state.

Figure 10: SBRS Declaration Example

We have transcribed our model (BiS-WMN*), through the generic example of (Figure 3), in the

BigraphER specification language to execute it, and simulate its system behavior. Our specification is

divided into four parts. The first defines the signature of the model; it is illustrated in (Figure 7) where we

declare the controls of the different used nodes. Next, we specify a set of stochastic reactions rules for

13

10 Towards Channels Allocation Scheme Model for WMNs based on SBRS with Sharing

this example; we especially instantiate those presented above. A rule example that handles an allocation

of a given channel (C2 in our case) is presented in (Figure 8). An algebraic specification of our initial

bigraph must also be given (see Figure 9). Finally, a complete definition of the corresponding reactive

system is indicated at (Figure 10)(for this example) where we identify the initial bigraph (n0) and the set

of considered reaction rules.

The BigraphER tool performs the execution of this example. As important result, we affirm that not

all defined reaction rules are applied and we have three possible states. Table 2 shows the result of our

reaction rules execution, each BiS-WMN* state is represented graphically as a combination of the two

(places and links) graphs. The first state is the initial bigraph, the second and the third ones are obtained

after applying the stochastic rules: Meta rule1 and Meta rule2. We notice that only channel allocation

reaction rules are applied. Indeed, when calculating rule rates, we find that channel numbered 4 is the

most appropriate one after channel numbered 1 (i.e., it has the greater rate). Therefore, we have no need

to apply verification (Meta-rule3) or updating (Meta-rule4) stochastic reaction rules in this particular

example.

6 Conclusion

We have presented in this work a semantic framework for modeling multi-radio wireless mesh networks.

Specifically, we have shown the interest of a given BRS extension, coupling the bigraph with nodes

sharing and stochastic bigraph, to support the modeling of WMNs.

We have defined a complete bigraphical model, called BiS-WMN*, for both the static and the dynamic

parts of a WMN network. A generic topology (structure) of this network is represented thanks to a

Topology root of the bigraph. While its reconfigured states are specified, given another Interference root,

by some stochastic reaction rules. Each rule is decorated with a rate expressing a possible stochastic

evolution of the WMN network while running the CA algorithm of [18]. Besides, our formal model was

executed and simulated under the BigraphER tool.

This work provides a new opportunity to formal specify and verify the WMN routing protocols. Since our

bigraphical model is generic, it can be extended by several structures regarding Wireless Mesh Networks

features. In the near future, we plan to use the added stochastic information, in order to express and verify

the non-functional properties (quality of service) and thus, ensure the flow improvement and performance

of WMNs networks.

References

[1] L. Birkedal E. Hjsgaard A.J. Glenstrup, T.C. Damgaard (2008): An implementation of bigraph matching.

[2] Thomas T. Hildebrandt Alexander Faithfull, Gian Perrone (2012): BigRed: a development environment for

bigraph. 4th International Workshop on Graph Computation Models.

[3] Peter Hoefner Annabelle McIver Marius Portmann Wee Lum Tan Ansgar Fehnker, Robert van Glabbeek
(2012): Automated Analysis of AODV using UPPAAL. 18th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems.

[4] Peter Hoefner Annabelle McIver Marius Portmann Wee Lum Tan Ansgar Fehnker, Robert van Glabbeek
(2012): A Process Algebra for Wireless Mesh Networks. 22nd European Symposium on Programming.

[5] M. Miculan D. Grohmann (2007): Directed bigraphs. Electronic Notes in Theoretical Computer Science.

[6] T. Hildebrandt G. Perrone (2012): A Model Checker for Bigraphs. Proceedings of the 27th ACM Sym. in
Applied Computing ACM-SAC’12.

14

Rachida Boucebsi , Faiza Belala 11

[7] Wee Lum Tan Marius Portmann Robert van Glabbeek, Peter Hoefner (2013): Robert van Glabbeek, Peter

Hoefner, Wee Lum Tan and Marius Portmann. 16th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, pp. 1-10, Barcelona, Spain, November.

[8] Qiang Zhou Hejiao Huang (2012): Petri-net-based Modeling and Resolving of Black Hole Attack in WMN.
IEEE 36th International Conference on Computer Software and Applications Workshops.

[9] C. Yuan J. Billington (2009): On modeling and analyzing the dynamic MANET on-demand (DYMO) routing

protocol. Transactions on Petri Nets and Other Models of Concurrency III., ser. Lecture Notes in Computer
Science. Springer Berlin /Heidelberg., vol. 5800.

[10] A. Troina J. Krivine, R. Milner (2008): Stochastic bigraphs. Electronic Notes in Theoretical Computer
Science,218:7396.

[11] L. Kristensen K. Espensen, M. Kjeldsen (2008): Modeling and initial validation of the DYMO routing pro-

tocol for mobile ad-hoc networks. Applications and Theory of Petri Nets (Petri NETS08), ser. LNCS, K. M.
van Hee and R. Valk, Eds., vol. 5062. Springer,.

[12] R. Milner (2008): Bigraphs and their algebra. Proc. of the LIX Colloquium on Emerging Trends in Concur-
rency Theory, Electronic Notes in Theoretical Computer Science Elsevier, V. 209, 5-19.

[13] R. Milner (2009): The Space and Motion of Communicating Agents. Cambridge University Press.

[14] Michele Sevegnani Muffy Calder (2014): Modelling IEEE 802.11 CSMA-CA RTS-CTS with stochastic bi-

graphs with sharing. Formal Aspects of Computing, Volume 26, Issue 3, pp 537-561, Springer.

[15] Maryam Kamali Peter Hoefner (2013): Quantitative Analysis of AODV and its Variants on Dynamic Topolo-

gies using Statistical Model Checking. 11th International Conference on Formal Modeling and Analysis of
Timed Systems (Formats ’13), pp. 15, Buenos Aires, Argentina.

[16] Sarah Edenhofer Peter Hoefner (2012): Towards a Rigorous Analysis of AODVv2 (DYMO). 2nd International
Workshop on Rigorous Protocol Engineering (WRiPE 2012), pp. 1-6, Austin, Texas.

[17] O.H. Jensen R. Milner (2004): Bigraphs and mobiles processes. Technical Report 580, University of Cam-
bridge.

[18] Faiza Belala Rachida Boucebsi, Lakhdar Derdouri (2014): Affectation des Canaux dans Routage Multi-

Chemins: Cas des Reseaux Mesh. 3rd edition of the Student Day ESI’14 (Jeesi 14, Algiers, Algria).

[19] Lakhdar Derdouri Rachida Boucebsi, Faiza Belala (2014): Modeling Channel Allocation via BRS: Case of

WMNs. International Conference on Advanced Aspects of Software Engineering (ICAASE14).

[20] Michele Sevegnani (2012): Bigraph Evaluator and Rewriting. Available at
http://www.dcs.gla.ac.uk/ michele/bigrapher.html.

[21] Michele Sevegnani (2012): Bigraphs with sharing and applications in wireless networks. PhD thesis, Uni-
versity of Glasgow.

[22] L. Birkedal T.C. Damgaard (2006): Axiomatizing binding bigraphs. Nordic Journal of Computing,
13(12):5877.

15

12 Towards Channels Allocation Scheme Model for WMNs based on SBRS with Sharing

Figure 11: Example of Meta-rules instantiation

16

Rachida Boucebsi , Faiza Belala 13

states Simulation

1

1

1

Table 2: Simulation results

17

Bliudze, S., Bruni, R., Carbone, M., Silva, A. (Eds.); ICE 2011
EPTCS 59, 2011, pp. 37–51, doi:10.4204/EPTCS.59.4

Structured Operational Semantics for Graph Rewriting⇤

Andrei Dorman
Dip. di Filosofia, Università Roma Tre
LIPN – UMR 7030, Université Paris 13

andrei.dorman@lipn.univ-paris13.fr

Tobias Heindel
LIPN – UMR 7030, Université Paris 13

tobias.heindel@lipn.univ-paris13.fr

Process calculi and graph transformation systems provide models of reactive systems with labelled
transition semantics. While the semantics for process calculi is compositional, this is not the case for
graph transformation systems, in general. Hence, the goal of this article is to obtain a compositional
semantics for graph transformation system in analogy to the structural operational semantics (SOS)
for Milner’s Calculus of Communicating Systems (CCS).

The paper introduces an SOS style axiomatization of the standard labelled transition semantics for
graph transformation systems. The first result is its equivalence with the so-called Borrowed Context
technique. Unfortunately, the axiomatization is not compositional in the expected manner as no rule
captures “internal” communication of sub-systems. The main result states that such a rule is derivable
if the given graph transformation system enjoys a certain property, which we call “complementarity of
actions”. Archetypal examples of such systems are interaction nets. We also discuss problems that
arise if “complementarity of actions” is violated.

Key words: process calculi, graph transformation, structural operational semantics, compositional methods

1 Introduction

Process calculi remain one of the central tools for the description of interactive systems. The archetypal
example of process calculi are Milner’s p-calculus and the even more basic calculus of communication
systems (CCS). The semantics of these calculi is given by labelled transition systems (LTS), which in
fact can be given as a structural operational semantics (SOS). An advantage of SOS is their potential for
combination with compositional methods for the verification of systems (see e.g. [17]).

Fruitful inspiration for the development of LTS semantics for other “non-standard” process calculi
originates from the area of graph transformation where techniques for the derivation of LTS semantics
from “reaction rules” have been developed [16, 7]. The strongest point of these techniques is the context
independence of the resulting behavioral equivalences, which are in fact congruences. Moreover, these
techniques have lead to original LTS-semantics for the ambient calculus [15, 3], which are also given
as SOS systems. Already in the special case of ambients, the SOS-style presentation goes beyond the
standard techniques of label derivation in [16, 7]. An open research challenge is the development of a
general technique for the canonical derivation of SOS-style LTS-semantics. The problem is the “monolithic”
character of the standard LTS for graph transformation systems.

In the present paper, we set out to develop a partial solution to the problem for what we shall call
CCS-like graph transformation systems. The main idea is to develop an analogy to CCS where each action
a has a co-action a that can synchronize to obtain a silent transition; this is the so-called communication
rule. In analogy, one can restrict attention to graph transformation systems with rules that allow to
assign to each (hyper-)edge a unique co-edge. Natural examples of such systems are interaction nets as
⇤This work was partially supported by grants from Agence Nationale de la Recherche, ref. ANR-08-BLANC-0211-01

(COMPLICE project) and ref. ANR-09-BLAN-0169 (PANDA project).

38 SOS for Graph Rewriting

introduced by Lafont [11, 1]. In fact, one of the motivations of the paper is to derive SOS semantics for
interaction nets.

Structure and contents of the paper We first introduce the very essentials of graph transformation and
the so-called Borrowed Context (BC) technique [7] for the special case of (hyper-)graph transformation
in Section 2. To make the analogy between CCS and BC as formal as possible, we introduce the system
SOSBC in Section 3, which is meant to provide the uninitiated reader with a new perspective on the BC
technique. Moreover, the system SOSBC emphasizes the “local” character of graph transformations as
every transition can be decomposed into a “basic” action in some context. In particular, we do not have
any counterpart to the communication rule of CCS, which shall be addressed in Section 4. We illustrate
why it is not evident when and how two labeled transitions of two states that share their interface can be
combined into a single synchronized action. However, we will be able to describe sufficient conditions on
(hyper-)graph transformation systems that allow to derive the counterpart of the communication rule of
CCS in the system SOSBC. Systems of this kind have a natural notion of “complementarity of actions” in
the LTS.

2 Preliminaries

We first recall the standard definition of (hyper-)graphs and a formalism of transformation of hyper-graphs
(following the double pushout approach). We also present the labelled transition semantics for hyper-graph
transformation systems that has been proposed in [7]. In the present paper, the more general case of
categories of graph-like structures is not of central importance. However, some of the proofs will use
basic results of category theory.
Definition 2.1 (Hypergraphs and hypergraph morphisms). Let L be a set of labels with associated
arity function ar : L! N. A (L-labelled) hyper-graph is a tuple G = (E,V,`,cnct) where E is a set
of (hyper-)edges, V is a set of vertices or nodes, ` : E ! L is the labelling function, and cnct is the
connection function, which assigns to each edge e 2 E a string (e.g. a finite sequence) of incident vertices
cnct(e) = v1 · · ·vn of length ar(`(e)) = n (where {v1, . . . ,vn}✓V). Let v2V be a node; its degree, written
deg(v) is the number of edges of which it is an incident node, i.e. deg(v) = |{e 2 E | v incident to e}|
(where for any finite set M, the number of elements of M is |M|). We also write v 2 G and e 2 G if v 2V
and e 2 E.

Let Gi = (Ei,Vi,`i,cncti) (i2 {1,2}) be hyper-graphs; a hyper-graph morphism from G1 to G2, written
f : G1!G2 is a pair of functions f = (fE : E1!E2, fV : V1!V2) such that `2� fE = `1 and for each edge
e1 2 E1 with attached nodes cnct(e) = v1 · · ·vn we have cnct2(fE(e)) = fV (v1) · · · fV (vn). A hyper-graph
morphism f = (fE , fV) : G1!G2 is injective (bijective) if both fE and fV are injective (bijective); it is an
inclusion if both fE(e) = e and fV (v) = v hold for all e 2 E1 and v 2V1. We write G1! G2 or G2 G1
if there is an inclusion from G1 to G2, in which case G1 is a sub-graph of G2.

To define double pushout graph transformation and the Borrowed Context technique [7], we will
need the following constructions of hyper-graphs, which roughly amount to intersection and union of
hyper-graphs.
Definition 2.2 (Pullbacks & pushouts of monos). Let Gi = (Ei,Vi,`i,cncti) (i 2 {0,1,2,3}) be hyper-
graphs and let G1 ! G3 G2 be inclusions. The intersection of G1 and G2 is the hyper-graph G0 =
(E1\E2,V1\V2,`0,cnct0) where `0(e) = `1(e) and cnct0(e) = cnct2(e) for all e 2 E1\E2. The pullback
of G1! G3 G2 is the pair of inclusions G1 G0 ! G2 and the resulting square is a pullback square
(see Figure 1).

19

Andrei Dorman, Tobias Heindel 39

G3

G1

G2

G0

G0

G1

G2

G00

Figure 1: Pullback and pushout square

Let G1 G0! G2 be inclusions; they are non-overlapping if both E1\E2 ✓ E0 and V1\V2 ✓ V0
hold. The pushout of non-overlapping inclusions G1 G0!G2 is the pair of inclusions G1!G00 G2
where G00 = (E1[E2,V1[V2,`00,cnct00) is the hyper-graph that satisfies

`00(e) =

(
`1(e) if e 2 E1

`2(e) otherwise
and cnct00(e) =

(
cnct1(e) if e 2 E1

cnct2(e) otherwise

for all e 2 E1[E2.

Finally, we are ready to introduce graph transformation systems and their labelled transition semantics.

Definition 2.3 (Rules and graph transformation systems). A rule (scheme) is a pair of non-overlapping
inclusions of hyper-graphs r = (L I! R). Let A,B be hyper-graphs such that A L and moreover
A I! R is non-overlapping. Now, r transforms A to B if there exists a diagram as
shown on the right such that the two squares are pushouts and there is an isomorphism
i : B0 ! B. A graph transformation system (GTS) is pair S = (L,R) where L is a
set of labels and R is a set of rules.

L I R

A D B0

A graph transformation rule can be understood as follows. Whenever the left hand side L is (isomorphic
to) a sub-graph of some graph A then this sub-graph can be “removed” from A, yielding the graph D. The
vacant place in D is then “replaced” by the right hand side R of the rule. The middleman I is the memory
of the connections L had with the rest of the graph in order for R to be attached in exactly the same place.

We now present an example that will be used throughout the paper to illustrate the main ideas.

Example 2.1. The system Sex = (L,R) will be the following one in the sequel: L = {a,b ,g, . . .} such
that ar(a) = 2, ar(b) = 3 and ar(g) = 1; moreover R is the set of rules given in Figure 2 where the Ri
represent different graphs (e.g. edges with labels Ri).

To keep the graphical representations clear, all inclusions in the running example are given implicitly
by the spatial arrangement of nodes and edges.

b

a
 ! R1

(a) Rule “a/b”

a

g
 ! R2

(b) Rule “a/g”

b

g
 ! R3

(c) Rule “b/g”

b

a g
 !

R4

(d) Rule “a/b/g”

Figure 2: Reaction rules of Sex.

20

40 SOS for Graph Rewriting

Remark 2.1 (Rule instances). Given a rule L I! R and a graph A such that A L, one can assume
w.l.o.g. that A I! R is non-overlapping. The reason is that in each case, the rule L I! R could
be replaced by an isomorphic “rule instance” r 0 = L0 I0 ! R0 (based on the standard notion of rule
isomorphism).

In fact the result of each transformation step is unique (up to isomorphism). This is a consequence of
the following fact.

Fact 2.4 (Pushout complements). Let G2 G1 G0 be a pair of hyper-graph
inclusions where Gi = (Ei,Vi,`i,cncti) (i 2 {0,1,2}) such that for all v 2V1 \V0
there does not exist any edge e 2 E2 \E0 such that v is incident to e. Then there
exists a unique sub-graph G2 D such that (1) is a pushout square.

G1 G0

G2 D

(1)

Definition 2.5 (Pushout Complement). Let G2 G1 G0 be a pair of hyper-graph inclusions that satisfy
the conditions of Fact 2.4; the unique completion G2 D G0 in (1) is the pushout complement of
G2 G1 G0.

Definition 2.6 (Labelled transition system). A labelled transition system (LTS) is a tuple (S,Ł,R) where
S is a set of states, Ł is a set of labels and R✓ S⇥Ł⇥S is the transition relation. We write

s a�! s0

if (s,a,s0) 2 R and say that s can evolve to s0 by performing a .

Definition 2.7 (DPOBC). Let S = (L,R) be a graph transformation
system. Its LTS has all inclusions of hyper-graphs J! G as states where
J is called the interface; the labels are all pairs of inclusions J! F K,
and a state J! G evolves to another one K! H if there is a diagram as
shown on the right, which is called a DPOBC-diagram or just a BC-diagram.
In this diagram, the graph D is called the partial match of L.

D L I R

G Gc C H

J F K

For a technical justification of this definition, see [16], but let us give some intuitions on what this
diagram expresses. States are inclusions, where the “larger” part models the whole “internal” state of the
system while the “smaller” part, the interface, models the part that is directly accessible to the environment
and allows for (non-trivial) interaction. As a particular simple example, one could have a Petri net where
the set of places (with markings) is the complete state and some of the place are “open” to the environment
such that interaction takes place by exchange of tokens.

The addition of agents/resources from the environment might result in “new” reactions, which have
not been possible before. The idea of the LTS semantics for graph transformation is to consider (the
addition of) “minimal” contexts that allow for “new” reactions as labels. The minimality requirement
of an addition J! E or J! F is captured by the two leftmost squares in the BC diagram above: the
addition J! F is “just enough” to complete part of the left hand side L of some rule. If the reaction
actually takes place, which is captured by the other two squares in the upper row in the BC diagram, some
agents might disappear / some resources might be used (depending on the preferred metaphor) and new
ones might appear. Finally the pullback square in the BC diagram restricts the changes to obtain the new
interface into the result state after reaction. As different rules might result in different deletion effects that
are “visible” to the environment, the full label of each such “new” reaction is the “trigger” J! F together
with the “observable” change F K (with state K! H after interaction).

21

Andrei Dorman, Tobias Heindel 41

3 Three Layer SOS semantics

We start with a reformulation of the borrowed context technique that breaks the “monolithic” BC-step into
axioms (that allow to derive the basic actions) and two rules that allow to perform these basic actions
within suitable contexts. The axioms corresponds to the CCS-axioms that describe that the process a.P
can perform the action a and then behaves as P, written a.P�a� P where a ranges over the actions a,a,
and t . In the case of graphs, each rule L I! R gives rise to such a set of actions. More precisely, each
subgraph D of L can be seen as an “action” with co-action bDL! L such that L is the union of D and bDL.
For example, in the rule a/b , both edges a and b yield (complementary) basic actions.

Formally, in Table 1, we have the family of Basic Action axioms. It essentially represents all the
possible uses of a transformation rule. In an (encoding of) CCS, the left hand side would be a pair of unary
edges a and a, which both disappear during reaction. Now, if only a is present “within” the system, it
needs a to perform a reaction; thus, the part a of the left hand side induces the (inter-)action that consists
in “borrowing” a and deleting both edges (and similarly for a). In general, e.g. in the rule a/b/g there
might be more than two edges that are involved in a reaction and thus we have a whole family of actions.
More precisely, each portion of a left hand side induces the action that consists in borrowing the missing
part to perform the reaction (thus obtaining the coplete left hand side), followed by applying the changes
that are described by the right part of the rule.

Next, we shall give counterparts for two CCS-rules that describe that an action can be performed
in parallel to another process and under a restriction. More precisely, whenever we have the transition
P�a� P0 and another process Q, then there is also a transition P k Q�a� P0 k Q; similarly, we also have
(nb)P�a� (nb)P0 whenever a /2 {b,b}. More abstractly, actions are preserved by certain contexts. The
notion of context in the case of graph transformation, which will be the counterpart of process contexts
such as P k [·] and (nb)[·], is as follows.
Definition 3.1 (Context). A context is a pair of inclusions C = J! E J0. Let J! G be a state (such
that E J! G is non-overlapping); the combination of J! G with the context C, written C[J! G], is
the inclusion of J0 into the pushout of E J! G as illustrated in the following display.

state:

J

G
context:

J E J0
construction:

J

G

E J0

G
combination:

J0

G

The left inclusion of the context, i.e. J! E, can also be seen as a state with the same interface. The
pushout then gives the result of “gluing” E to the original G at the interface J; the second inclusion J0 ! E
models a new interface, which possibly contains part of J and additional “new” entities in E.

With this general notion of context at hand, we shall next address the counterpart of name restriction,
which we call interface narrowing, the second rule family in Table 1. In CCS, the restriction (na) preserves
only those actions that do not involve a. The counterpart of the context (na)[·] is a context of the form
J! J J0. In certain cases, one can “narrow” a label while “maintaining” the “proper” action as made
formal in the following definition.
Definition 3.2 (Narrowing). A narrowing context is a context of the form C = J! J J0. Let J!F K
be a label such that the pushout complement of F J J0 exists; then the C-narrowing of the label,
written C[J! F K] is the lower row in the following display

C[J! F K] := J0

J

F 0

F

K0

K
where C = J! J J0

22

42 SOS for Graph Rewriting

where the left square is a pushout and the right one a pullback. Whenever we write C[J! F K], we
assume that the relevant pushout complement exists.

If we think of the interface as the set of free names of a process, then restricting a name means removal
from the interface. Thus, J0 is the set of the remaining free names. If the pushout complement F 0 exists, it
represents F with the restricted names erased. Finally, since a pullback here can be seen as an intersection,
K0 is K without the restricted names. So we finally obtain the “same” label where “irrelevant” names
are not mentioned. It is of course not always possible to narrow the interface. For instance, one cannot
restrict the names that are involved in labelled transitions of CCS-like process calculi. This impossibility
is captured by the non-existence of the pushout complement.

With the notion of narrowing, we can finally define the interface narrowing rule in Table 1.
The final rule in Table 1 captures the counterpart of performing an action in parallel composition with

another process P. In the case of graph transformation, this case is non-trivial since even the pure addition
of context potentially interferes with the action of some state J ! G. For example, if an interaction
involves the deletion of an (isolated) node, the addition of an edge to this node inhibits the reaction.
However, for each transition there is a natural notion of non-inhibiting context; moreover, to stay close to
the intuition that parallel composition with a process P only adds new resources and to avoid overlap with
the narrowing rule, we restrict to monotone contexts.

Definition 3.3 (Compatible contexts). Let C = J! E J be a context; it is
monotone if J! J. Let J! F K be a label; now C is non-inhibiting w.r.t.
J! F K if it is possible to construct the diagram (2) where both squares are
pushouts. Finally, a context J! E J is compatible with the label J! F K
if it is non-inhibiting w.r.t. it and monotone. E

J

E1

F

E 0

K
(2)

In a label J! F K, the left inclusion represents the addition of new entities that “trigger” a certain
reaction. A compatible context is simply a context that is able to provide at least F , usually more than F ,
while not attaching new edges to nodes that disappear during reaction.

The last rule in the SOSBC-system of Table 1 is the embedding of a whole transition into a monotone
context. To define this properly, we introduce a partial operation for the “combination” of co-spans
(which happens to be a particular type of relative pushout of co-spans); this generalizes the narrowing
construction.

Definition 3.4 (Cospan combination). Let C = (J ! F K) and C = (J ! E J) be two cospans.
They are combinable if there exists a diagram of the following form.

E

J

E1

F

E 0

K

J F K =: C[J! F K]

The label J! F K is the combination of C with C, and is denoted by C[J! F K].

In fact, it is easy to show that compatible contexts are combinable with their label.

Lemma 3.5. Given a reduction label J! F K and a compatible context J! E J for it, we can
split the diagram 2 in order to get

23

Andrei Dorman, Tobias Heindel 43

E E1 E 0

J F K

J F K

and E

J

E1

F

E 0

K

J F K =C[J! F K]

.

With this lemma we can finally define the rule that corresponds to “parallel composition” of an
action with another “process”. Now the SOSBC-system does not only give an analogy to the standard
SOS-semantics for CCS, we shall also see that the labels that are derived by the standard BC technique
are exactly those labels that can be obtained from the basic actions by compatible contextualization and
interface narrowing. In technical terms, the SOSBC-system of Table 1 is sound and complete.

• Basic Actions

(D! D)
D!L I�����! (I! R)

where (L I! R) 2S
and D! L

• Interface Narrowing

(J! G)
J!F K�����! (K! H)

(J0 ! G)
J0!F 0 K0������! (K0 ! H)

where C = J! J J0

and J0 ! F 0 K0 =C[J! F K]

• Compatible Contextualization

(J! G)
J!F K�����! (K! H)

C[J! G]
C[J!F K]������!C[K! H]

where C = J! E J compatible with J! F K
and C = (J! F K)[C]

Table 1: Axioms and rules of the SOSBC-system.

Theorem 3.6 (Soundness and completeness). Let S be a graph transformation system. Then there is a
BC-transition

(J! G)
J!F K�����! (K! H)

if and only if it is derivable in the SOSBC-system.

The main role of this theorem is not its technical “backbone”, which is similar to many other
theorems on the Borrowed Context technique. The main insight to be gained is the absence of any “real”
communication between sub-systems; roughly, every reaction of a state can be “localized” and then
derived from a basic action (followed by contextualization and narrowing). In particular, we do not
have any counterpart to the communication-rule in CCS, which has complementary actions P �a� P0

and Q�a� Q0 as premises and concludes the possibility of communication of the processes P and Q to
perform the silent “internal” transition P k Q �t� P0 k Q0. The main goal is to provide an analysis of
possible issues with a counterpart of this rule.

24

44 SOS for Graph Rewriting

4 The composition rule for CCS-like systems

Process calculi, such as CCS and the p-calculus, have a so-called communication rule that allows to
synchronize sub-processes to perform silent actions. The involved process terms have complementary
actions that allow to interact by a “hand-shake”. However, it is an open question how such a communication
rule can be obtained for general graph transformations systems via the Borrowed Context technique.
Roughly, the label of a transition does not contain information about which reaction rule was used to
derive it; in fact, the same label might be derived using different rules. Intuitively, we do not know how to
identify the two hands that have met to shake hands.

To elaborate on this using the metaphor of handshakes, assume that we have an agent that needs a
hand to perform a handshake or to deliver an object. If we observe this agent reaching out for another
hand, we cannot conclude from it which of the two possible actions will follow. In general, even after the
action is performed, it still is not possible to know the decision of the agent – without extra information,
which might however not be observable. However, with suitable assumptions about the “allowed actions”,
all necessary information might be available.

First, we recall from [2] that DPOBC-diagrams (as defined in Definition 2.7) can be composed under
certain circumstances.

Fact 4.1. Let

(J! G)
J!F K�����! (K! H) and (J0 ! G0) J0!F 0 K0������! (K0 ! H 0)

be two transitions obtained from two DPOBC-diagrams with the same rule r = L I! R. Then, it is
possible to build a DPOBC-diagram with the same rule for the composition of J! G and J0 ! G0 along
some common interface J JL

D ! J0.

Take the following example as illustration of this fact.

Example 4.1 (Composition of transitions). Let J! G be a state of Sex that contains an edge a with its
second connection in the interface as shown in Figure 3(a). Further, let J0 ! G0 be a state that contains
an edge b with its second connection in the interface as shown in Figure 3(b). Both graphs can trigger a
reaction from rule a/b/g . Such a composition is shown in Figure 3(c).

Hence, we see that is in general possible to combine transitions to obtain new transitions. However,
we emphasize at this point, that derivability of a counterpart of the communication rule of CCS is not the
same question as the composition of pairs of transitions that come equipped with complete BC-diagrams.
To clarify the problem, consider the following example where we cannot infer the used rule from the
transition label.

Example 4.2. Let G be a graph composed of two edges a and b and consider a transition label where an
edge g is “added”. Then it is justified by both rules a/g and b/g (see Figure 4).

We shall avoid this problem by restricting to suitable classes of graph transformation systems. More-
over, for simplicities sake, we shall focus on the derivation of “silent” transitions in the spirit of the
communication rule of CCS.

Definition 4.2 (Silent label). A label J ! F K is silent or t if J = F = K; a silent transition is a
transition with a silent label.

Intuitively, a silent transition is one that does not induce any “material” change that is visible to an
external observer that only has access to the interface of the states. Hence, in particular, a silent transition
does not involve additions of the environment during the transition. Moreover, the interface remains

25

Andrei Dorman, Tobias Heindel 45

b g
a

R4

GG

(a) A first transition

a g
b

G0 G0

R4

(b) A second transition

g
GG

a

G0
b

R4

G0

(c) The composition of the transitions

Figure 3: An example of composition.

unchanged. This latter requirement does not have any counterpart in process calculi, as the interface is
given implicitly by the set of all free names. (In graphical encodings of process terms [3] it is possible to
have free names in the interface even though there is no corresponding input or output prefix in the term.)

Now, with the focus on silent transitions, for a given rule L I! R we can illustrate the idea of
complementary actions as follows. If a graph G contains a subgraph D of L and moreover a graph G0

has the complementary subgraph of D in L in it, then G and G0 can be combined to obtain a big graph
G – the “parallel composition” of G and G0 – that has the whole left hand side L as a subgraph and
thus G can perform the reaction. A natural example for this are Lafont’s interaction nets where the left
hand side consist exactly of two hyper-edges, which in this case are called cells. The intuitive idea of
complementary (basic) actions is captured by the notion of active pairs.

Definition 4.3 (Active pairs). For any inclusion D! L, where D 6= L and for all nodes v of D, deg(v)> 0,
let the following square be its initial pushout

JL
D

D

bDL

L

,

i.e. bDL is the smallest subgraph of L that allows for completion to a pushout. We call bDL the complement
of D in L and JL

D the minimal interface of D in L and we write {D,D0}⌘ L if D0 = bDL. The set of active

26

46 SOS for Graph Rewriting

b g ba R2

(a) A transition from rule a/g

b g aa R3

(b) A transition from rule b/g

Figure 4: Same transition label for different rules.

pairs is
D=

�
{D, bDL} | L I! R 2R,D! L, D 6= L, 8v 2 D.deg(v)> 0

.

Abusing notation, we also denote by D the union of D.
It is easy to verify that the complement of bDL in L is D itself and that its minimal interface is also JL

D .
It is the set of “acceptable” partial matches in the sense that they do not yield a t-reaction on their own.
Indeed, if D is equal to L, then the resulting transition of this partial match is a t-transition. And if it is
just composed of vertices, its complement is L and thus not acceptable.
Example 4.3 (Active pairs). In our running example, the set D of our example is in obvious bijection to

�
{a,b},{a,g},{b ,g},{a,b + g},{a +b ,g},{a + g,b}

.

The minimal interface of any pair is a single vertex.
This completes the introduction of preliminary concepts to tackle the issues that have to be resolved

to obtain “proper” compositionality of transitions.

4.1 Towards a partial solution

Let us address the problem of identifying the rule that is “responsible” for a given interaction. We start by
considering the left inclusions of labels, which intuitively describe possible borrowing actions from the
environment. Relative to this, we define the admissible rules as those rules that can be used to let states
evolve while borrowing the specified “extra material” from the environment.
Definition 4.4 (Admissible rule). Let J! G be a state and let J! F be an inclusion (which represents a
possible contribution of the context). A rule r is admissible (for J! F) if L 6! G and it is possible to
find D 2 D and L the left-hand side of r , such that the following diagram commutes

JL
D

G

J F

Gc

D

L
\

27

Andrei Dorman, Tobias Heindel 47

where JL
D ! D is the minimal interface of D in L. We call D the rule addition.

This just means that G can evolve using the rule r if D is added at the proper location.

Proposition 4.5 (Precompositionality). Let J! G J!F K�����! K! H and J0 ! G0 J0!F 0 K0������! K0 ! H 0 be
two transitions such that a single rule r is admissible for both, and let D and D0 be their respective rule
additions. If {D,D0} 2 D, it is possible to compose G and G0 into a graph G in a way to be able to derive
a t-transition using rule r .

Proof. We first show that in such a case, D0 !G and the pushout of G D0 ! L is exactly Gc. Similarly,
D!G0 and the pushout of G0 D! L is exactly G0c. Then, it is easy to see that it is possible to build the
DPOBC-diagram D1 using rule r on G (respectively G0) yelding the transition (J!G)

J!F K1�����! (K1!H1)

for some K1,H1 (respectively the DPOBC-diagram D2 yelding the transition (J! G)
J!F K2�����! (K2! H2)

for some K2,H2), and then compose D1 and D2.
This follows from {D,D0} 2 D and G⌘ Gc. Indeed, E = L so the top left morphism of the composed

DPOBC-diagram is an isomorphism and so are the ones under it, using basic pushout properties.

This first result motivates the following definition.
Definition 4.6 (t-compatible). In the situation of Proposition 4.5, we say the two transitions are t-
compatible.
Remark 4.1. In general, in Proposition 4.5, the result of the t-transition cannot be constructed from H
and H 0; thus we do not yet speak of compositionality.
Example 4.4. Let G be a graph composed of two edges a and g and G0 of two edges b and g (see
Figure 5). Then the rule a/b is admissible for both transitions and moreover they are t-compatible. The
rule a/b yields the respective rule additions. “Glueing” G and G0 by their interface results in a graph with
edges a,b and two gs; the latter graph can perform a t-reaction from rule a/b , which however does not
give the desired result since the target state is not the “expected composition” of H and H 0. In other words,
although we have been able to construct a t-transition, it is not the composition of the original transitions.

bg R3a a

(a) A transition from rule b/g

gb ba R2

(b) A transition from rule a/g

Figure 5: t-compatible, but not composable: different rules.

We can see from the examples here that the difficulty of defining a composition of transitions comes
mainly from three facts. The first is that a partial match can have several subgraphs triggering a reaction.
This is delt with by the construction of the set of active pairs. The second one is the possibility to connect
multiple edges together, not knowing which one exactly is consumed in the reaction. Finally, a given edge
can have multiples ways of triggering a reaction.

28

48 SOS for Graph Rewriting

4.2 Sufficient conditions

We now give two frameworks in which neither of the two last problems do occur. Avoiding each of them
separately is enough to define compositionality properly. Both cases are inspired by the study of interaction
net systems [12, 6, 14], which can be represented in the obvious manner as graph transformation systems.
In these systems, the DPOBC-diagram built from an admissible rule of a transition is necessarily the one
that has to be used to derive the transition. In one case, it works for essentially the same reasons as in CCS:
every active element can only interact with a unique other element, such as a vs. a, b vs. b. In the other
one, the label itself is not enough, but since we also know where it “connects” to the graph, it is possible
to “find” the partner that was involved in the transition.

We introduce interaction graph systems, which are caracterized among other rewriting systems by
the form of the left-hand sides of the reaction rules, composed of exactly two hyperedges connected by a
single node. We fix a labeling alphabet L.

Definition 4.7. An activated pair is a hypergraph L on L composed of two hyperedges e and f and a
node v such that v appears exactly once in cnct(e) and once in cnct(f). If v is the i-th incident vertex of e
labelled a and the j-th incident vertex of f labelled b , we denote the activated pair by eionf j and label it
by aionb j.

An interaction graph system (L,R) is given by a set of reaction rules R over hypergraphs on L where
all left-hand side of rules are activated pairs, and nodes are never deleted, i.e. for any rule r = L I! R,

• L is an activated pair;

• for any node v, v 2 L) v 2 I.

Note that for any interaction graph system, the set D is composed of pairs {D,D0} where each of them
is composed of an edge and its connected vertices. Also the minimal interface of any active pair {D,D0}
is a single node. It is also the case that it is enough for interfaces to be composed of vertices only.

Example 4.5. SIMPLY WIRED HYPERGRAPHS Lafont interaction nets are historically the first interaction
nets. They appear as an abstraction of linear logic proof-nets [12]. Originally, Lafont nets have several
particular features, but the one we are interested in is the condition on connectivity.

Definition 4.8. Let N = (E,V,`,cnct) be a hypergraph on L.
The graph N is simply wired if 8v 2V , deg(v) 2. When deg(v) = 1, we say that v is free.

In other words, vertices are only incident to at most two edges of a graph. Note that in this special
case no issues arise if we restrict to the sub-category of simply wired hypergraphs. For this, we argue that
the purpose of the interface is the possible addition of extra context; thus, in simply wired hypergraphs, it
is meaningless for a vertex that is already connected to two edges to be in the interface.

Definition 4.9 (Lafont interaction graph system). A Lafont interaction graph is a simply connected graph
such that its interface consists of free vertices only. A Lafont system L= (L,R) is given by reaction rules
over Lafont interaction graphs; it is partitioned if two left-hand sides only overlap trivially, i.e. for two
rules r j = L j I j! R j 2R (j = 1,2), either L1 = L2 or L1\L2 is the empty graph (without any nodes
and any hyperedges).

Lemma 4.10. Let L be a partitioned Lafont system, let J! G be a state, let (J! G)
J!F K�����! (K! H)

be a non-t transition. Then there is exactly one admissible rule for this transition.

Example 4.6. HYPERGRAPHS WITH UNIQUE PARTNERS By generalizing Lafont interaction nets, we
obtain so called multiwired interaction nets. But then we lose the unicity of the rule for a given transition
label. It can be recovered by another condition.

29

Andrei Dorman, Tobias Heindel 49

Definition 4.11 (Unique partners). Let I = (L,R) be an interaction graph system. We say it is with
unique partners if for any a 2L and for all i ar(a), there exists a unique b 2L and a unique j ar(b)
such that aionb j is the label of a left-hand side of a rule in R.

Lemma 4.12. Let J! G a state of I and (J! G)
J!F K�����! (K! H) a non-t reaction label. Then there

is exactly one admissible rule r for this transition.
Finally, we conclude our investigation with the following positive result.

Theorem 4.13 (Compositionality). Let (L,R) be a Lafont interaction graph system, or an interaction
graph system with unique partners. Let D be its set of active pairs.

Let t1 = (J!G)
J!F K�����! (K!H) and t2 = (J0 !G0) J0!F 0 K0������! (K0 !H 0) be two non-t transitions

and D and D0 their respective rule additions.
If {D,D0}⌘ L 2 D, let G and H are described by the following diagrams

JL
D

J

J0

G

G0

GJ R

H

H 0

H

where JL
D ! J and JL

D ! J0 are the inclusions from the admissibility of r for states J! G and J0 ! G0

(Definition 4.4).
Then

(J! G)
J!J J����! (J! H).

Sketch of proof. By Lemma 4.10 or 4.12, there exists exactly one rule r 2R with L as a left-hand side
that allows to derive transitions t1 and t2 – it is indeed the same rule for both. Let D be the composition
diagram of the DPOBC-diagrams justifying the transitions.

It is first shown that G⌘Gc. Since the upper and lower left squares of D are pushouts we can infer that
D⌘ L and J ⌘ F . Finally, since no vertex is deleted (see Definition 4.7), we have J!C and thus K ⌘ J.

So D is a BC-diagram of a t-reaction from J! G to J! H.

In fact, the main property that we have used is the following.

Definition 4.14 (Complementarity of Actions). A graph transformation
systems satisfies Complementarity of Actions if for each transition
(J! G)

J!F K�����! (K! H) there is a unique rule L I! R such that
there exists a DPOBC-diagram as shown to the right.

D L I R

G Gc C H

J F K

In this situation, we can effectively determine if two transitions are t-compatible. Thus we can derive
a counterpart of the communication rule of CCS. Hence, if a graph transformation systems satisfies
Complementarity of Actions then a rule of the following form is derivable in SOSBC.

t = (J! G)
J!F K�����! (K! H) t 0 = (J! G0) J!F 0 K0������! (K0 ! H 0)

(J! G)
J!J J����! (J! H)

t and t 0 t-compatible

In other words, in a graph transformation system with Complementarity of Actions we can apply the
results of [2] to obtain a counterpart to the communication rule.

30

50 SOS for Graph Rewriting

5 Related and Future work

On a very general level, the present work is meant to strengthen the conceptual similarity of graph
transformation systems and process calculi; thus it is part of a high-level research program that has been
the theme of a Dagstuhl Seminar in 2005 [9]. In this wide field, structural operational semantics is
occasionally considered as an instance of the tile model (see [8] for an overview). With this interpretation,
SOS has served as motivation for work on operational semantics of graph transformation systems (e.g. [5]).

A new perspective on operational semantics, namely the “automatic” generation of labeled transition
semantics from reaction rules, has been provided by the seminal work of Leifer and Milner [13] and its
successors [16, 7]; as an example application, we want to mention the “canonical” operational semantics
for the ambient calculus [15]. The main point of the latter work is the focus on the “properly” inductive
definition of structural operational semantics. To the best of our knowledge, there is no recent work on the
operational semantics of graph transformation systems that provides a general method for the inductive
definition of operational semantics. This is not to be confused with the inductive definition of graphical
encodings of process calculi on (global) states.

With this narrower perspective on techniques for the “automatic” generation of LTSs, we want to
mention that some ideas of our three layer semantics in Section 3 can already be found in [3], where all
rules of the definition of the labelled transition semantics have at most one premise. This is in contrast
to the work of [15] where the labelled transition semantics is derived from two smaller subsystems: the
process view and the context view; the subsystems are combined to obtain the operational semantics. The
latter work is term based and it manipulates complete subterms of processes using the lambda calculus in
the meta-language. We conjecture that the use of this abstraction mechanism is due to the term structure
of processes.

Concerning future work, the first extension of the theory concerns more general (hierarchical) graph-
like structures as captured by adhesive categories [10] and their generalizations (e.g. [4]). Moreover,
as an orthogonal development, we plan to consider the case of more general rules that are allowed to
have an arbitrary (graph) morphism on the right hand side; moreover, also states are arbitrary morphisms.
The general rule format is important to model substitution in name passing calculi while arbitrary graph
morphisms as states yield more natural representations of (multi-wire) interaction nets. The main challenge
is the quest for more general sufficient conditions that allow for non-trivial compositions of labelled
transitions, which can be seen as a general counterpart of the CCS communication rule.

6 Conclusion

We have reformulated the BC technique as the SOSBC-system in Table 1 to make a general analogy to the
SOS-rules for CCS. There is no need for a counterpart of the communication rule. We conjecture that this
is due to the “flat” structure of graphs as opposed to the tree structure of CCS-terms.

The main contribution concerns questions about the derivability of a counterpart of the communication
rule. First, we give an example, which illustrates that the derivability of such a rule is non-trivial; however,
it is derivable if the relevant graph transformation system satisfies Complementarity of Actions. We have
given two classes of examples that satisfy this requirement, namely hyper-graphs with unique partners
and simply wired hyper-graphs. This is a first step towards a “properly” inductive definition of structural
operational semantics for graph transformation systems.

Acknowledgements We would like to thank Barbara König, Filippo Bonchi and Paolo Baldan for providing us

31

Andrei Dorman, Tobias Heindel 51

with drafts and ideas about a more general research program on compositionality in graph transformation. We are
also grateful for the constructive criticism and the helpful comments of the anonymous referees.

References
[1] V. Alexiev (1999): Non-deterministic interaction nets. Ph.D. thesis, University of Alberta, Edmonton, Alta.,

Canada.
[2] P. Baldan, H. Ehrig & B. König (2006): Composition and Decomposition of DPO Transformations with

Borrowed Context. In: Proc. of ICGT ’06 (International Conference on Graph Transformation), Springer, pp.
153–167, doi:10.1007/11841883 12. LNCS 4178.

[3] F. Bonchi, F. Gadducci & G. V. Monreale (2009): Labelled transitions for mobile ambients (as synthe-
sized via a graphical encoding). Electronic Notes in Theoretical Computer Science 242(1), pp. 73–98,
doi:10.1016/j.entcs.2009.06.014.

[4] B. Braatz, H. Ehrig, G. Karsten & U. Golas (2010): Finitary M-adhesive categories. In: Graph Transforma-
tions: 5th International Conference, ICGT 2010, Twente, the Netherlands, September 27–October 2, 2010,
Proceedings, Springer-Verlag, pp. 234–249, doi:10.1007/978-3-642-15928-2 16.

[5] Andrea Corradini, Reiko Heckel & Ugo Montanari (2000): Graphical Operational Semantics. In: ICALP
Satellite Workshops, pp. 411–418.

[6] T. Ehrhard & L. Regnier (2006): Differential interaction nets. Theoretical Computer Science 364(2), pp.
166–195, doi:10.1016/j.tcs.2006.08.003.

[7] H. Ehrig & B. König (2006): Deriving Bisimulation Congruences in the DPO Approach to Graph
Rewriting with Borrowed Contexts. Mathematical Structures in Computer Science 16(6), pp. 1133–1163,
doi:10.1017/S096012950600569X.

[8] F. Gadducci & U. Montanari (2000): The tile model. In Gordon D. Plotkin, Colin Stirling & Mads Tofte,
editors: Proof, Language, and Interaction, The MIT Press, pp. 133–166.

[9] B. König, U. Montanari & P. Gardner, editors (2005): 04241 Abstracts Collection. Dagstuhl Seminar Proceed-
ings 04241, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, Dagstuhl, Germany. Available at http://drops.dagstuhl.de/opus/volltexte/2005/27.

[10] S. Lack & P. Sobociński (2005): Adhesive and quasiadhesive categories. RAIRO - Theoretical Informatics
and Applications 39(2), pp. 522–546, doi:10.1051/ita:2005028.

[11] Y. Lafont (1990): Interaction nets. In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’90, ACM, New York, NY, USA, pp. 95–108, doi:10.1145/96709.96718.

[12] Y. Lafont (1995): From proof-nets to interaction nets. In: Proceedings of the workshop on Advances in linear
logic, Cambridge University Press, New York, NY, USA, pp. 225–247, doi:10.1017/CBO9780511629150.012.

[13] J. J. Leifer & R. Milner (2000): Deriving Bisimulation Congruences for Reactive Systems. In Catus-
cia Palamidessi, editor: CONCUR, Lecture Notes in Computer Science 1877, Springer, pp. 243–258,
doi:10.1007/3-540-44618-4 19.

[14] D. Mazza (2006): Interaction Nets: Semantics and Concurrent Extensions. Ph.D. thesis, Université de la
Méditerranée & Roma Tre.

[15] J. Rathke & P. Sobociński (2010): Deriving structural labelled transitions for mobile ambients. Information
and Computation 208, pp. 1221–1242, doi:10.1016/j.ic.2010.06.001.

[16] V. Sassone & P. Sobociński (2003): Deriving Bisimulation Congruences Using 2-categories. Nordic Journal
of Computing 10(2), pp. 163–183.

[17] A. Simpson (2004): Sequent calculi for process verification: Hennessy-Milner logic for an arbitrary GSOS.
Journal of Logic and Algebraic Programming 60–61, pp. 287–322, doi:10.1016/j.jlap.2004.03.004.

32

Submitted to:
MeMo 2015

c� V. Danos, T. Heindel, R. Honorato-Zimmer & S. Stucki

Computing approximations for graph transformation systems

Vincent Danos
School of Informatics

University of Edinburgh
vdanos@inf.ed.ac.uk

Tobias Heindel
School of Informatics

University of Edinburgh
theindel@inf.ed.ac.uk

Ricardo Honorato-Zimmer
School of Informatics

University of Edinburgh
r.honorato@sms.ed.ac.uk

Sandro Stucki
sandro.stucki@epfl.ch

Programming Methods Laboratory, EPFL

We describe a tool that can compute a differential equation for the mean occurrence counts of a fixed
graph observable in a given stochastic graph transformation system. It is an open problem whether the
function that gives the mean occurrence count of the graph motif at a fixed time on the positive real
line is approximable to arbitrary precision. However, the tool allows to express common practices to
approximate the function using mean-field and refined approximation techniques. In the long term,
we plan an extension to stochastic bisimulation checking for graph transformation systems.

1 Introduction

In the context of dynamic systems where states have complex structure, graph transformation [2, 5]
is a natural candidate for a general formalism to describe all possible transitions of systems. Graph
transformation is a particularly useful specification formalism if all possible transitions between system
states fall into a finite number of transition classes such that each transition class has a common principle
of a local structural modification that can be captured by a single rule of graph transformation.

Graph transformation systems in which rules are equipped with rates gives rise to a continuous-
time Markov chain [8]. Intuitively, transitions between states have now a propensity to take place in an
infinitesimal small time step; formally, they define the infinitesimal generator of a Markov chain which
has isomorphism classes of finite graphs as states.

The central topic of the paper is the calculation of the mean occurrence count of certain graphs of
interest in function of time in such a stochastically evolving graph. A classic example that comes to
mind is the count of triangles in a random graph; for stochastic graph transformation systems one might
thus ask how their expected numbers change over time. In general, given a stochastically evolving graph
(specified by a stochastic graph transformation system), the question that we seek to answer is how many
occurrences of a certain fixed graph, the observable graph pattern, can one expect to have at a given
time in the future. It is an open problem whether this function can be computed to arbitrary precision
in general. We present a tool that allows to compute (approximations to) this continuous-time behaviour
by deriving an ordinary differential equation (ODE) for the rate of change of the mean occurrence count
of any graph motif. The procedure has been informally described in [3] and we provide an abriged
version in §3. It is a well-known problem to give guarantees for the quality of the approximations.
“Analytical approximation approaches vary in their complexity, and there is usually an associated trade-
off in accuracy (as measured, for example, by comparing the prediction of the theory with a large-scale
Monte Carlo simulation of the dynamics)” [11, p. 18]. Roughly, the problem is that the function that
counts the number of occurrences of a graph does not have any bound a priori; we can nevertheless derive

2 Computing approximations for graph transformation systems

fundamental equations for variances of counting functions and sometimes even get precise solutions.
The tool has the form of a Scala library named graph-rewriting and is available for download from
https://github.com/rhz/graph-rewriting/.

We use the voter model treated in Ref. [3] as running example and show how to obtain its results
automatically by the tool. In this model, nodes can be in either of two states, ‘red’ or ‘blue’, and there
are two types of rewriting rules, so-called ‘flips’ and ‘swaps’:

Flips

8
><

>:
Swaps

8
><

>:

White nodes are to be thought colourless, i.e. they represent nodes that can be in any of the two states.
White nodes represent nodes that can be in any of the two states. Typically node colours are interpreted
as people’s opinions and thus these rules attempt to minimise disparity among acquaintances. These
rules show an interesting behaviour that has been studied in depth in Ref. [4].

One question Ref. [4] sets out to answer is what happens in the long run. Clearly, if the graph
reaches a state where everyone has the same opinion, no further rule applications are possible. Also, if
the graph disconnects (due to the application of a swap), as soon as every connected component becomes
monochrome the system halts. What will be the number of red and blue nodes in these halted states in
average? Of course, this will depend, among other factors, on the likelihood of each flip with respect to
one another and the fraction of red and blue nodes at the start. Will the network split before one colour
wins over the other? Since the only way to split the network is by applying a swap, the likelihood of
these two rules with respect to the flips will be crucial. To answer these questions quantitatively, we
equip our rules with rates and compute the derivative of the number of red (or blue) nodes over time. In
the running example, the rates are k01,k10 for the flips from red (0) to blue (1) and from blue (1) to red
(0), respectively; and k0,k1 are the rates for the swaps.

2 Graph transformation

Rules are like productions of Chomsky grammars, according to the analogy from the first paper of al-
gebraic graph transformation [7]; in particular they have a left- and right-hand side. The first obvious
difference are the kinds of structures being rewritten, i.e. graphs vs. strings. However, one subtle but
important difference that the analogy does sweep under the carpet is the fact that applications of graph
transformation rules always involve a single occurrence of the left- and right-hand side. For each rule
application we always know where and how the rule is applied. This is essential for the definition of the
continuous-time stochastic semantics of graph transformation.

A rule of transformation for any general type of structure consists of a left-hand side L, a right-hand
side R, and a pair of partial maps from nodes and edges of L to those of R such that they jointly preserve
the structure of the left hand side. as in single pushout graph transformation [10]. The nodes and edges
that have an image along these partial maps are preserved by the rule, although their label might change.
Instead, the nodes and edges in the left-hand side that do not have an image are destroyed, while those
in the right-hand side that do not have a pre-image are created by an application of the rule. Note that
the application of a rule always is relative to an occurrence of the left-hand side L in a graph G, which is
formalised by an injective (total) graph morphism from L to G.

34

V. Danos, T. Heindel, R. Honorato-Zimmer & S. Stucki 3

2.1 Graphs

The concrete graphs that are handled by the tool are node- and edge-labelled directed multi-graphs (al-
though the general method applies to several other graph-like structures). Directed multi-graphs defini-
tion is as usual. The labelling of nodes and edges is formalised by a partial function from nodes (resp.
edges) to colours for each state of the system, thus equipping graphs with a partial labelling of nodes
(resp. edges). Colourless nodes are then those that are not in the domain of definition of the labelling
function. The ocurrence count of a graph G is written as [G] and G+H denotes the disjoint union of G
and H.

In the graph-rewriting library, graphs are parametric in the type of nodes, edges, and labels they
contain. In particular, the type of nodes and labels can be anything. Edges however can only be an
instance of a class implemeting the DiEdgeLike interface. Any class that defines a source and target

method can implement this interface. For multi-edges an id is needed to differentiate between edges that
have the same source and target. The library comes with a default class for multi-edges, IdDiEdge,
and graphs must be comprised of edges of this type to be fed to the ODE generation algorithm.

The example introduced in the previous section uses undirected graphs instead of directed graphs.
To encode the model, we could split each rule into two versions, one for each direction (if the rules had
more than one edge it would be a combinatorial expansion though!). Here we take a simpler approach
instead: edges always go from red to blue.

A multi-edge can be created by using IdDiEdge’s constructor, e.g. the expression IdDiEdge(0,"u",
"v") will create an edge from node “u” to “v” with an id of type Int and value 0. Also, an edge can
be created by using ~~>, as in "u"~~>"v". This will implicitly define an id for that edge by means of
a global counter that will not generate the same id twice but could produce an id that has been already
used by the user.

Graphs are mutable and so can be constructed progressively by adding nodes, edges and labels to
them. When a new graph is instantiated, an initial set of nodes, edges and labels can be defined. For
example, Graph("u"->"l1","v"->"l2")("u"~~>"v") will create a graph with two nodes “u” and
“v” with labels “l1” and “l2” respectively and an unlabelled edge from “u” to “v”. More specifically,
the Graph constructor takes as a first set of parameters any number of nodes with an optional label each,
indicated by an arrow (->). Then it takes a second set of parameters for edges and their optional labels
in the same fashion. Note that some nodes and edges can be left unlabelled while others are labelled.
For instance, the left-hand side of the first swap rule may be constructed by the following expression:
Graph("u"->"red","v"->"blue","w")("u"~~>"v").

Whenever we want to create a Graph that does not have edges or nodes or labels, we must specify
a type for them. Otherwise Scala’s type inference will assign them a Nothing type. There are 4 type
parameters in total for Graph’s constructor: the node type, node label type, edge type, and edge label
type. The first two are specified before the first set of parameters and the other two right before the sec-
ond set of parameters, as in Graph[String,String]("u")[IdDiEdge[Int, String],String]().
Repeating the type parameters again every time we would like to instantiate a Graph can rapidly become
unwieldy and in models usually all Graphs will have the same type signature. For this reason the library
let us create custom constructors with specific type parameters defined beforehand by using Graph’s
withType method, e.g.

val G = Graph.withType[String,String,IdDiEdge[Int,String],String]

val oneNodeGraph = G("u")()

35

4 Computing approximations for graph transformation systems

2.2 Rules

As mentioned earlier, rules are described by two graphs (L and R) and a pair of partial maps between them
for nodes and edges. The library uses Scala’s Map to define the latter. Additionally, rules are equipped
with a Rate, which are comprised of a name and a value and constructed as Rate(‘‘rate name’’,

rateValue) with rateValue a Double, or implicitly from a String, as in the following example (with
an implicit value of 1.0). Consider the first swap rule in our example. One way to construct this rule
would be:

val lhs = Graph("u"->"red","v"->"blue","w")("u"~~>"v")
val rhs = Graph("u"->"red","v"->"blue","w")("v"~~>"w")
val swap0 = Rule(lhs, rhs, Map("u"->"u","v"->"v","w"->"w"),

Map(), "k0")

Where "k0" is the name for the rate. In the generated ODEs it will appear by this name instead of its
numerical value. This allows an easier interpretation of where the terms of each ODE come from. In the
definition of this Rule all nodes are preserved while no edge is, since the partial map for edges is empty.
Note that, when mapping edges, attention has to be paid to the ids of edges, not just their source and
target. In our example, the flip rule preserves the edge in its left-hand side and can be constructed
using the following code:

val e = "u"~~>"v"
val lhs = Graph("u"->"red","v"->"blue")(e)

val rhs = Graph("u"->"red","v"->"red")(e)

val flip0 = Rule(lhs, rhs, Map("u"->"u","v"->"v"),

Map(e->e), "k01")

The complete code needed to define all rules can be found in Appendix A.

3 ODE generation

The ODE generation algorith depends heavily on a graph construction called minimal glueings in Ref. [3]
and related to local co-products. This construction allows us to characterise all pair of matches of any two
graphs onto a common target graph into a unique family among finitely many. Each family represents
a way in which the two graphs can overlap. Intuitively, we use it to enumerate all possible ways in
which the application of a rule could create or destroy instances of the desired observables. It is worth
noting that, although finite, there may be exponentially many minimal glueings (i.e. families) for a pair
of graphs!

Call m(A,B) the set of minimal glueings of A and B. The algorithm proceeds as follows, given
an observable G: 1) for each rule left-hand side L, compute m(G,L); 2) for each rule right-hand side
R, compute m(G,R) and apply the inverse rule to each element of m(G,R) – call this set m0(G,R); 3)
generate an ODE for [G] of the form:

d
dt
[G] = Â

(L*R,k)2R

k

Â
H2m0(G,R)

[H]� Â
F2m(G,L)

[F]

!

4) We repeat the procedure for the new observables [H] and [F].

36

V. Danos, T. Heindel, R. Honorato-Zimmer & S. Stucki 5

3.1 Equations

We have just seen how to build flip and swap rules and so we are ready to use our algorithm to obtain
a system of differential equations that can describe the average count of an observable in time. To do
this we use the generateMeanODEs method in moments. This method accepts 3 mandatory parameters,
namely, the maximum number of ODEs to be discovered, a list of rules and a list of observables. Op-
tionally we can provide so-called ‘transformers’ which are explained in the next section. As output, this
method returns a list of equations. We can use ODEPrinter to print them to the standard output or to
save them in an Octave script that will integrate the system of differential equations.

To answer one of our initial questions about the model – namely how many red (or blue) nodes there
are in the halted state – let us consider the following simple observable: a single red node.

val redNode = G("u" -> "red")()

val equations = meanfield.mfa(2,

List(flip0,flip1,swap0r,swap0b,swap1r,swap1b), List(redNode))

Here we use the custom Graph constructor defined above, G. To print these equations, we use
ODEPrinter(equations).print. The output, rendered graphically, is:

d
dt

h i
= (k10 � k01)(

h i
+
h i

) (1)

d
dt

h i
= � k10

h i
� k01

h i
+ k10

h i
+ k01

h i
(2)

� k10

h i
� k01

h i
+ k10

h i
+ k01

h i

� (k10 + k01)(
h i

+
h i

+
h i

)� (k1 + k0)
h i

If we were to ask for the ODEs of these observables, we would get bigger observables and from the
ODEs of these even bigger observables in a process that would never terminate. However, we are inter-
ested in obtaining a system of differential equations that is closed. To this end, we have to make some
approximations which can be integrated algorithmically by using ‘transformers’.

The reader might wonder why the second ODE listed above has a term for the graph with a red and
a blue node with two edges between them. This comes from the fact that whenever we apply a flip to
a pair of nodes that have more than one edge between them, more than one instance of the red-to-blue
pattern is deleted at once. It is indeed sufficient to look at each pair of multi-edges to account for all
those deletions.

3.2 Transformers: approximations and simplifications

A transformer is any function defined on Graphs that returns a graph monomial or nothing (i.e. an
Option[Mn[N,NL,E,EL]] with N, NL, E, and EL the Graph’s type parameters). A transformer is applied
whenever a new observable is discovered by the ODE generation mechanism. If it returns a graph
monomial, an algebraic (instead of differential) equation is generated for that observable, equating the
observable to the returned monomial. Here is where the user is given the freedom to equate expressions
that are not actually equal and thus introduce approximations. It is worth noting that in the abscence of
transformers, all ODEs discovered by the algorithm are exact. If the transformer returns nothing, then
the algorithm will compute an ODE for the observable (as long as the maximum number of ODEs to be
generated hasn’t been reached).

37

6 Computing approximations for graph transformation systems

The first transformer that we introduce in our example will help us to break down disconnected graph
observables into their constituent connected components, keeping the size of some graph observables
bounded. Formally, this amounts to say that the expected value of the ocurrence counts of a disconnected
graph observable (given the time-dependent probability distribution p on the the state space), Ep([G])
with G = A+B+ ...+C, is approximately Ep([A]) ·Ep([B]) · ... ·Ep([C]). This approximation is akin
to that used in the theory of Petri nets for computing rate equations, e.g. that d

dt Ep([A]) = Ep([2A]) '
Ep([A])2 in the system comprised of the single reaction 2A ! 3A. It is based on the assumption of
independence between observables. In the following code snippets, we assume type N is String, E is
IdDiEdge[Int,N], and NL, EL are any types.

def splitConnectedComponents(g: Graph[N,NL,E,EL]): Option[Mn[N,NL,E,EL]] =

if (g.isConnected) None else Some(Mn(g.components))

This is indeed a general transformation and thus it is supplied as part of the library. This transformer
will return None when the graph is connected, meaning that connected graph observables will not be
approximated by it.

The second approximation introduced is the so-called “pair approximation”, which in the most gen-
eral case entails approximating a mean ocurrence count of a graph G as the product of two overlapping
subgraphs G1,G2 such that G1[G2 =G, divided by their intersection I, i.e. Ep([G])'Ep([G1])Ep([G2])/
Ep([I]). This approximation assumes conditional independence of the overlapping subgraphs.

def pairApprox(g: Graph[N,NL,E,EL]): Option[Mn[N,NL,E,EL]] =

if (g.nodes.size == 3 && g.edges.size == 2 && g.isConnected) {

val List(e1, e2) = g.edges.toList

val intersection = e1.nodes &~ (e1.nodes &~ e2.nodes)

Mn(g.inducedSubgraph(e1.nodes)) *

g.inducedSubgraph(e2.nodes) /

g.inducedSubgraph(intersection)

} else None

Where &~ is Scala’s set difference operator. The code presented here performs a “pair approximation”
on graphs with 3 nodes and 2 edges like the ones obtained in Eq. 2, splitting them into two graphs with
2 nodes and 1 edge each, and the intersection being the node in the middle.

Finally, the only observables left that blow up the expansion are the terms with multi-edges between
two nodes. However, if the initial state is a sparse graph, a multi-edge is highly unlikely to ever occur.
Hence we approximate this observable’s average ocurrence count as zero.

def noParallelEdges(g: Graph[N,NL,E,EL]): Option[Mn[N,NL,E,EL]] =

if (g.nodes.size == 2 && g.edges.size == 2) Some(Mn.zero)

else None

4 Example results

In this section we show the results obtained from running the model in our example as presented in
Appendix A. Please note that we have manually translated the textual output notation given by the tool

38

V. Danos, T. Heindel, R. Honorato-Zimmer & S. Stucki 7

into the graphical notation used throughout this paper.

d
dt

h i
= (k10 � k01)(

h i
+
h i

)

d
dt

h i
= (k01 � k10)(

h i
+
h i

)

d
dt

h i
= � k10

h ih i
/
h i

+ k10

h ih i
/
h i

� k10

h ih i
/
h i

+ k10

h ih i
/
h i

� k01

h ih i
/
h i

+ k01

h ih i
/
h i

� k01

h ih i
/
h i

+ k01

h ih i
/
h i

� (k10 + k01)
h i

� (k1 + k0)
h ih i

d
dt

h i
= � k10

h ih i
/
h i

+ k10

h ih i
/
h i

� k10

h ih i
/
h i

+ k10

h ih i
/
h i

� k01

h ih i
/
h i

+ k01

h ih i
/
h i

� k01

h ih i
/
h i

+ k01

h ih i
/
h i

� (k10 + k01)
h i

� (k1 � k0)
h ih i

d
dt

h i
= �2k01

h ih i
/
h i

�2k01

h ih i
/
h i

+2k10

h ih i
/
h i

+ k10

h ih i
/
h i

+ k10

h ih i
/
h i

+ k10

h i
+ k10

h i

d
dt

h i
= �2k10

h ih i
/
h i

�2k10

h ih i
/
h i

+2k01

h ih i
/
h i

+ k01

h ih i
/
h i

+ k01

h ih i
/
h i

+ k01

h i
+ k01

h i

d
dt

h i
= 0

Note that the algorithm discovered that the number of nodes with any colour is invariant. By generating
an Octave script using saveAsOctave method in ODEPrinter, the system of differential equations can
be integrated numerically. In particular, the solution to the set of ODEs above has been computed and is
shown in Fig. 1.

4.1 Variance and other moments

In addition to the mean number of red nodes (Ep([0])), we can compute what the variance of this number
is by using the formula V([0]) = Ep([0]2)�Ep([0])2. Minimal glueings let us express [0]2 as a sum of

39

8 Computing approximations for graph transformation systems

0

20

40

60

80

100

0 0.005 0.01 0.015 0.02 0.025

Ex
pe

ct
ed

va
lu

e

Time (arbitrary units)

Ep([0])
Ep([01])
Ep([00])
Ep([?])

Figure 1: Solution to the system of ordinary differential equations given the following initial conditions:
[0] = 50,[1] = 50,[01] = 50,[10] = 50,[00] = 50,[11] = 50, and [?] = 100 with ? the graph consisting of a
single colourless node and rates k10 = 15, k01 = 0.1, k0 = 1, and k1 = 1.

observables: [0]2 = [0+0]+ [0]. For this reason, we compute an ODE for Ep([0+0]) without using any
transformers (splitConnectedComponents would transform [0+ 0] back into [0]2 and the other two
are irrelevant in this case).

d
dt

h i
= 2(k10 � k01)(

h i
+
h i

)+2k10(
h i

+
h i

) (3)

Formulas exist that relate the value of any moment to lower moments. Hence these higher moments can
be computed in a similar fashion to the one shown here.

5 Related and future work

A complete list of related work is beyond the scope of the paper: We expect a large number of concrete
models that have been studied extensively in application-specific, ad hoc terminology to be captured
equally well by graph transformation. We refer the reader to Ref. [11] for a recent overview on dynamical
systems on networks that are of particular interest to the authors and gives references for a relevant part
of the immense body of literature; in particular, the type of approximations that we expect to be used
as transformers in our tool are related to those listed under the heading of Mean-Field Theories, Pair
Approximations, and Higher-Order Approximations in the latter work.

A modelling formalism that is closely related to the algebraic approach to graph transformation are
process calculi. Before we sketch possible future research on the connection to this field, especially
recent work on stochastic process calculi such as [1], we point out some important differences. The

40

V. Danos, T. Heindel, R. Honorato-Zimmer & S. Stucki 9

terminology of observable is inspired by (classical) physics, chemistry and biology. In particular, graph
observables are a priori unrelated to the notion of observable actions from the process calculi literature
and there is no direct link to observational equivalences; also, the relation to observability in control
theory is unclear at best. Similarly, the question of whether it is suitable to consider a certain graph
as observable cannot be answered from the set of rules and the initial state alone; it is necessary to
have additional information from the specific application at hand. In examples from biology, such as
protein translation as modelled by the TASEP (see Ref. [13] for a tutorial), a graph would be suitable for
observation if the evolution of its mean occurrence counts would have a corresponding set of experiments
that allow to falsify or validate the model.

For the possible relations of the present paper to the process calculus literature that do exist, note
first that rule applications of graph transformation correspond to single step reductions in process cal-
culi. The ground-breaking observation of Leifer and Milner [9] was that one can automatically derive
labelled transition systems from reduction semantics (for process calculi). This idea has been success-
fully transferred to graph transformation [6]. We plan to use techniques from Ref. [6] to canonically
associate labelled Markov processes to graph transformation systems. We expect that analogues to the
semantics of CCS as labelled Markov processes given in [1] can be derived without complications; more-
over, the resulting labelled Markov processes might be meaningful for complex networks modelled by
graph transformation (while we would be rather surprised if such interactive semantics have applications
in biology or chemistry). In a slightly different direction and as a long term goal, we want to explore
whether the data structures and operations on graphs that are implemented in the tool can be re-used for
checking (approximate) stochastic bisimulation of graph transformation systems.

References

[1] Luca Cardelli & Radu Mardare (2014): The Measurable Space of Stochastic Processes. Fundam. In-
form. 131(3-4), pp. 351–371, doi:10.3233/FI-2014-1019. Available at http://dx.doi.org/10.3233/
FI-2014-1019.

[2] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel & Michael Löwe (1997):
Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach. In
Rozenberg [12], pp. 163–246.

[3] Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer & Sandro Stucki (2014): Approximations for
Stochastic Graph Rewriting. In: ICFEM, pp. 1–10, doi:10.1007/978-3-319-11737-9 1. Available at http:
//dx.doi.org/10.1007/978-3-319-11737-9_1.

[4] Richard Durrett, James P Gleeson, Alun L Lloyd, Peter J Mucha, Feng Shi, David Sivakoff, Joshua ES
Socolar & Chris Varghese (2012): Graph fission in an evolving voter model. Proceedings of the National
Academy of Sciences 109(10), pp. 3682–3687.

[5] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, Annika Wagner & Andrea Corra-
dini (1997): Algebraic Approaches to Graph Transformation - Part II: Single Pushout Approach and Com-
parison with Double Pushout Approach. In Rozenberg [12], pp. 247–312.

[6] Hartmut Ehrig & Barbara König (2006): Deriving bisimulation congruences in the DPO approach to graph
rewriting with borrowed contexts. Mathematical Structures in Computer Science 16(6), pp. 1133–1163,
doi:10.1017/S096012950600569X. Available at http://dx.doi.org/10.1017/S096012950600569X.

[7] Hartmut Ehrig, Michael Pfender & Hans Jürgen Schneider (1973): Graph-Grammars: An Algebraic Ap-
proach. In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, Octo-
ber 15-17, 1973, IEEE Computer Society, pp. 167–180, doi:10.1109/SWAT.1973.11. Available at http:
//dx.doi.org/10.1109/SWAT.1973.11.

41

10 Computing approximations for graph transformation systems

[8] Reiko Heckel, Georgios Lajios & Sebastian Menge (2006): Stochastic Graph Transformation Systems.
Fundamenta Informaticae 74(1), pp. 63–84. Available at http://iospress.metapress.com/content/
c7ha18g96nbm7g2e/.

[9] James J. Leifer & Robin Milner (2000): Deriving Bisimulation Congruences for Reactive Systems. In Catus-
cia Palamidessi, editor: CONCUR 2000 - Concurrency Theory, 11th International Conference, University
Park, PA, USA, August 22-25, 2000, Proceedings, Lecture Notes in Computer Science 1877, Springer, pp.
243–258, doi:10.1007/3-540-44618-4 19. Available at http://dx.doi.org/10.1007/3-540-44618-4_
19.

[10] Michael Löwe (1993): Algebraic Approach to Single-Pushout Graph Transformation. Theor. Comput. Sci.
109(1&2), pp. 181–224, doi:10.1016/0304-3975(93)90068-5. Available at http://dx.doi.org/10.1016/
0304-3975(93)90068-5.

[11] Mason A. Porter & James P. Gleeson (2014): Dynamical Systems on Networks: A Tutorial. CoRR
abs/1403.7663. Available at http://arxiv.org/abs/1403.7663.

[12] Grzegorz Rozenberg, editor (1997): Handbook of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations. World Scientific.

[13] R.K.P. Zia, J.J. Dong & B. Schmittmann (2011): Modeling Translation in Protein Synthesis with TASEP: A
Tutorial and Recent Developments. Journal of Statistical Physics 144(2), pp. 405–428, doi:10.1007/s10955-
011-0183-1. Available at http://dx.doi.org/10.1007/s10955-011-0183-1.

A Voter model

import graph_rewriting._

import implicits._

import moments._ // this imports N=String and E=IdDiEdge[Int,N]
type NL = String

type EL = String

val G = Graph.withType[N,NL,E,EL]

// first flip
val e = "u"~~>"v"
val rb = G("u"->"red","v"->"blue")(e)

val br = G("u"->"blue","v"->"red")(e)

val bb = G("u"->"blue","v"->"blue")(e)

val flip0a = Rule(rb, bb, Map("u"->"u","v"->"v"),

Map(e->e), "k01")

val flip0b = Rule(br, bb, Map("u"->"u","v"->"v"),

Map(e->e), "k01")

// second flip
val rr = G("u"->"red","v"->"red")(e)

val flip1a = Rule(rb, rr, Map("u"->"u","v"->"v"),

Map(e->e), "k10")

val flip1b = Rule(br, rr, Map("u"->"u","v"->"v"),

Map(e->e), "k10")

// first swap (blue rewire)
val rbw1 = G("u"->"red","v"->"blue","w")("u"~~>"v")
val rbw2 = G("u"->"red","v"->"blue","w")("w"~~>"v")
val swap0a = Rule(rbw1, rbw2, Map("u"->"u","v"->"v","w"->"w"),

42

V. Danos, T. Heindel, R. Honorato-Zimmer & S. Stucki 11

Map(), "k0")

val brw1 = G("u"->"blue","v"->"red","w")("u"~~>"v")
val brw2 = G("u"->"blue","v"->"red","w")("w"~~>"u")
val swap0b = Rule(brw1, brw2, Map("u"->"u","v"->"v","w"->"w"),

Map(), "k0")

// second swap (red rewire)
val rbw3 = G("u"->"red","v"->"blue","w")("w"~~>"u")
val swap1a = Rule(rbw1, rbw3, Map("u"->"u","v"->"v","w"->"w"),

Map(), "k1")

val brw3 = G("u"->"blue","v"->"red","w")("w"~~>"v")
val swap1b = Rule(brw1, brw3, Map("u"->"u","v"->"v","w"->"w"),

Map(), "k1")

def pairApproximation(g: Graph[N,NL,E,EL]): Option[Mn[N,NL,E,EL]] =

if (g.nodes.size == 3 && g.edges.size == 2 && g.isConnected) {

val List(e1, e2) = g.edges.toList

val intersection = e1.nodes &~ (e1.nodes &~ e2.nodes)

Mn(g.inducedSubgraph(e1.nodes)) *

g.inducedSubgraph(e2.nodes) /

g.inducedSubgraph(intersection)

} else None

def noParallelEdges(g: Graph[N,NL,E,EL]): Option[Mn[N,NL,E,EL]] =

if (g.nodes.size == 2 && g.edges.size == 2) Some(Mn.zero) else None

val redNode = G("u" -> "red")()

val twoRedNodes = G("u" -> "red", "v" -> "red")()

val odes = generateMeanODEs(10,

List(flip0a,flip0b,flip1a,flip1b,swap0a,swap0b,swap1a,swap1b),

List(redNode),

splitConnectedComponents[N,NL,E,EL] _,

pairApproximation _,

noParallelEdges _)

ODEPrinter(odes).print

println()

val varianceODE = generateMeanODEs(1,

List(flip0a,flip0b,flip1a,flip1b,swap0a,swap0b,swap1a,swap1b),

List(twoRedNodes))

ODEPrinter(varianceODE).print

43

DRAFT May 18, 2015
c� Parrow, Borgström, Eriksson, Gutkovas, Weber

This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

Modal Logics for Nominal Transition Systems

Joachim Parrow Johannes Borgström Lars-Henrik Eriksson
Ramūnas Gutkovas Tjark Weber

We define a uniform semantic substrate for a wide variety of process calculi where states and action
labels can be from arbitrary nominal sets. A Hennessy-Milner logic for these systems is introduced,
and proved adequate for bisimulation equivalence. We show how to treat different bisimulation
variants such as early, late and open in a systematic way, and make substantial comparisons with
related work. The main definitions and theorems have been formalized in Nominal Isabelle.

1 Introduction

Transition systems. Transition systems are ubiquitous in models of computing, and specifications to
say what may and must happen during executions are often formulated in a modal logic. There is a
plethora of different versions of both transition systems and logics, including a variety of higher-level
constructs such as updatable data structures, new name generation, alias generation, dynamic topologies
for parallel components etc. In this paper we formulate a general framework where such aspects can
be treated uniformly, and define accompanying modal logics which are adequate for bisimulation. This
is related to, but independent of, our earlier work on psi-calculi [4], which proposes a particular syntax
for defining behaviours. The present paper does not depend on any such language, and provides general
results for a large class of transition systems.

In any transition system there is a set of states P,Q, . . . representing the configurations a system can
reach, and a relation telling how a computation can move between them. Many formalisms, for example
all process algebras, define languages for expressing states, but in the present paper we shall make no
assumptions about any such syntax.

In systems describing communicating parallel processes the transitions are labelled with actions a,b ,
representing the externally observable effect of the transition. A transition P a�! P0 thus says that in state
P the execution can progress to P0 while conducting the action a , which is visible to the rest of the world.
For example, in CCS these actions are atomic and partitioned into output and input communications. In
value-passing calculi the actions can be more complicated, consisting of a channel designation and a
value from some data structure to be sent along that channel.

Scope openings. With the advent of the pi-calculus [19] an important aspect of transitions was intro-
duced: that of name generation and scope opening. The main idea is that names (i.e., atomic identifiers)
can be scoped to represent local resources. They can also be transmitted in actions, to give a parallel
entity access to this resource. In the monadic pi-calculus such an action is written a(nb), to mean that
the local name b is exported along the channel a. These names can be subjected to alpha-conversion: if

P
a(nb)���! P0 and c is a fresh name then also P

a(nc)���! P0{c/b}, where P0{c/b} is P0 with all bs replaced by
cs. Making this idea fully formal is not entirely trivial and many papers gloss over it. In the polyadic
pi-calculus several names can be exported in one action, and in psi-calculi arbitrary data structures may
contain local names. In this paper we make no assumptions about how actions are expressed, and just as-
sume that for any action a there is a finite set of names bn(a), the binding names, representing exported

2 Modal Logics for Nominal Transition Systems

names. In our formalization we use nominal sets, an attractive theory to reason about objects depending
on names on a high level and in a fully rigorous way.

State predicates. The final general components of our transition systems are the state predicates ranged
over by j , representing what can be concluded in a given state. For example state predicates can be
equality tests of expressions, or connectivity between communication channels. We write P ` j to mean
that in state P the state predicate j holds.

A structure with states, transitions and state predicates as discussed above we call a nominal transi-
tion system.

Hennessy-Milner Logic. Modal logic has been used since the 1970s to describe how facts evolve
through computation. We use the popular and general branching time logic known as Hennessy-Milner
Logic [15] (HML). Here the idea is that an action modality hai expresses a possibility to perform an
action a . If A is a formula then haiA says that it is possible to perform a and reach a state where A
holds. With conjunction and negation this gives a powerful logic shown to be adequate for bisimulation
equivalence: two processes satisfy the same formulas exactly if they are bisimilar. In the general case,
conjunction must take an infinite number of operands when the transition systems have states with an
infinite number of outgoing transitions. The fully formal treatment of this requires care in ensuring that
such infinite conjunctions do not exhaust all names, leaving none available for alpha-conversion. All
previous works that have considered this issue properly have used uniformly bounded conjunction, i.e.
the set of all names in all conjuncts is finite.

Contributions. Our definition of nominal transition systems is very general since we leave open what the
states, transitions and predicates are. The only requirement is that transitions satisfy alpha-conversion. A
technically important point is that we do not assume the usual name preservation principle, that if P a�!P0

then the names occurring in P0 must be a subset of those occurring in P and a . This means that the results
are applicable to a wide range of calculi. For example, the pi-calculus represents a trivial instance where
there are no state predicates. CCS represent an even more trivial instance where bn always returns the
empty set. In the fusion calculus and the applied pi-calculus the state contains an environmental part
which tells what expressions are equal to what. In the general framework of psi-calculi the states are
processes with assertions describing their environments.

We define a modal logic with the hai operator that binds the names in bn(a), and contains operators
for state predicates. In this way we get a logic for an arbitrary nominal transition system such that logical
equivalence coincides with bisimilarity. We also show how variants of the logic correspond to late, open
and hyperbisimilarity in a uniform way. The main technical difficulty is to ensure that formulas and their
alpha-equivalence classes throughout are finitely supported, i.e. only depend on a finite set of names,
even in the presence of infinite conjunction. Instead of uniformly bounded conjunction we use the notion
of finite support from nominal sets. This results in greater generality and expressiveness. For example,
we can now define quantifiers and the next step modalities as derived operators.

Formalization. Our main definitions and theorems have been formalized in Nominal Isabelle [26]. This
has required significant new ideas to represent data types with infinitary constructors like infinite con-
junction and their alpha-equivalence classes. As a result we corrected several details in our formulations
and proofs, and now have very high confidence in their correctness. The formalization effort has been
substantial, but certainly less than half of the total effort, and we consider it a very worthwhile investment.

45

Parrow, Borgström, Eriksson, Gutkovas, Weber 3

Exposition. In the following section we provide the necessary background on nominal sets. In Section 3
we present our main definitions and results on nominal transition systems and modal logics. In Section
4 we derive useful operators such as quantifiers and fixpoints, and indicate some practical uses. Section
5 shows how to treat variants of bisimilarity such as late and open in a uniform way, and in Section 6 we
compare with related work and demonstrate how our framework can be applied to recover earlier results
uniformly. Finally Section 7 concludes with some remarks on the formalization in Nominal Isabelle. All
proofs are relegated to the Appendix.

2 Background on nominal sets

Nominal sets [24] is a general theory of objects which depend on names, and in particular formulates the
notion of alpha-equivalence when names can be bound. The reader need not know nominal set theory to
follow this paper, but some key definitions will make it easier to appreciate our work and we recapitulate
them here.

We assume an infinitely countable multi-sorted set of atomic identifiers or names N ranged over
by a,b, The permutations is the group of name permutations that leave all but finitely many names
invariant. The singleton permutation which swaps names a and b and has no other effect is written (ab),
and the identity permutation that swaps nothing is written id. Permutations are ranged over by p,p 0. The
effect of applying a permutation p to an object X is written p ·X . Formally, the permutation action · can
be any operation that satisfies id ·X = X and p ·(p 0 ·X) = (p �p

0) ·X , but a reader may comfortably think
of p ·X as the object obtained by permuting all names in X according to p .

A set of names N supports an object X if for all p that leave all members of N invariant it holds
p ·X = X . In other words, a support N of X is such that names outside N do not matter to X . If X has a
finite support then it also has a unique minimal support, written supp(X), intuitively consisting of exactly
the names that matter to X . As an example the set of names textually occurring in a datatype element
is the support of that element, and the set of free names is the support of the alpha equivalence class of
the element. Note that in general, the support of a set is not the same as the union of the support of its
members. An example is the set of all names; each element has itself as support, but the whole set has
empty support since any permutation of the set yields the same set.

We write a#X , pronounced “a is fresh for X”, for a 62 supp(X). The intuition is that if a#X then X
does not depend on a in the sense that a can be replaced with any fresh name without affecting X . If A is
a set of names we write A#X for 8a 2 A .a#X .

A nominal set S is a set with a permutation action such that X 2 S) p ·X 2 S, and where each
member X 2 S has finite support. A main point is that then each member has infinitely many fresh names
available for alpha-conversion. Similarly, a set of names N supports a function f on a nominal set if for
all p that leave N invariant it holds p · f (X) = f (p ·X), and similarly for relations and functions of higher
arity. Thus we extend the notion of support to finitely supported functions and relations as the minimal
finite support, and can derive general theorems such as supp(f (X))✓ supp(f)[supp(X).

An object that has empty support we call equivariant. For example, a unary function f is equivariant
if p · f (X) = f (p ·X) for all p,X . The intuition is that an equivariant object does not treat any name
special.

3 Nominal transition systems and Hennessy-Milner logic

Definition 1. A nominal transition system is characterized by the following

46

4 Modal Logics for Nominal Transition Systems

• STATES: A nominal set of states ranged over by P,Q.

• PRED: A nominal set of state predicates ranged over by j .

• An equivariant binary relation ` on STATES and PRED. We write P ` j to mean that in state P
the state predicate j holds.

• ACT: A nominal set of actions ranged over by a .

• An equivariant function bn from ACT to finite sets of names, which for each a returns a subset of
supp(a), called the binding names.

• An equivariant transition relation ! on states and residuals. A residual is a pair of action and
state. For ! (P,(a,P0)) we write P a�! P0. The transition relation must satisfy alpha-conversion of

residuals: If a 2 bn(a), b#a,P0 and P a�! P0 then also P
(ab)·a����! (ab) ·P0.

Definition 2. A bisimulation R is a symmetric binary relation on states in a nominal transition system
satisfying the following two criteria: R(P,Q) implies

1. Static implication: P ` j implies Q ` j .

2. Simulation: For all a,P0 such that bn(a)#Q there exist Q0 such that if P a�! P0 then Q a�! Q0 and
R(P0,Q0)

We write P ·⇠ Q to mean that there exists a bisimulation R such that R(P,Q).

Static implication means that bisimilar states must satisfy the same state predicates; this is reasonable
since these can be tested by an observer. The simulation requirement is familiar from the pi-calculus.

Proposition 3. ·⇠ is an equivariant equivalence relation.

The minimal HML for nominal transition systems is the following.

Definition 4. The nominal set of formulas A ranged over by A is defined by induction as follows:

A ::=
^

i2I
Ai | ¬A | j | haiA

Support and name permutation are defined as usual (permutation distributes over all formula con-
structors). In

V

i2I Ai it is assumed that the indexing set I has bounded cardinality, by which we mean that
|I| k for some fixed infinite cardinal k at least as large as the cardinality of STATES, ACT and PRED.
It is also required that {Ai}i2I has finite support; this is then the support of the conjunction. Note that
this does not imply that each conjunct has that support, and that we do not require the support of the
conjuncts to be uniformly bounded. Alpha-equivalent formulas are identified; the only binding construct
is in haiA where bn(a) binds into A.

The validity of a formula A for a state P is written P |= A and is defined by induction on A as follows.

Definition 5.
P |=

V

i2I Ai if for all i 2 I it holds that P |= Ai
P |= ¬A if not P |= A
P |= j if P ` j

P |= haiA if there exists P0 such that P a�! P0 and P0 |= A

In the last clause we assume that haiA is a representative of its alpha-equivalence class such that
bn(a)#P. It is easy to show that |= is an equivariant relation.

47

Parrow, Borgström, Eriksson, Gutkovas, Weber 5

Definition 6. Two states P and Q are logically equivalent, written P ·
= Q, if for all A it holds that P |= A

iff Q |= A

Theorem 7. P ·⇠ Q =) P ·
= Q

The proof is by induction over formulas. The converse result uses the idea of distinguishing formulas.

Definition 8. A distinguishing formula for P and Q is a formula A such that P |= A and not Q |= A.

Note that if A is a distinguishing formula for P and Q then ¬A is a distinguishing formula for Q and
P. Thus P and Q are logically equivalent precisely if there is no distinguishing formula for P and Q.
The following lemma says that we can find such a formula where, a bit surprisingly, the support does not
depend on Q.

Lemma 9. If A is a distinguishing formula for P and Q, then there exists a distinguishing formula B for
P and Q such that supp(B)✓ supp(P).

The proof is by direct construction: in the terminology of Pitts [24, Ch. 5] B is the conjunction of
hullsupp(P)A.

Theorem 10. P ·
= Q =) P ·⇠ Q

Proof: We establish that ·
= is a bisimulation. The proof of the simulation property of Theorem 10 is

different from earlier similar proofs. These use the name preservation property to show that ·
= restricted

to states with a finite bound on the names is a bisimulation. This does not hold in the present paper;
instead we use Lemma 9 to bound the support of distinguishing formulas.

4 Derived formulas

Dual connectives. We define logical disjunction
W

i2I Ai in the usual way as ¬
V

i2I ¬Ai, when the index-
ing set I has bounded cardinality and {Ai}i2I has finite support. A special case is I = {1,2}: we then
write A1 ^A2 instead of

V

i2I Ai, and dually for A1 _A2. We write > for the empty conjunction
V

i2 /0, and
? for ¬>. The must modality [a]A is defined as ¬hai¬A, and requires A to hold after every possible
a-labelled transition from the current state. For example, [a](A^B) is equivalent to [a]A^ [a]B, and
dually hai(A_B) is equivalent to haiA_haiB.

Quantifiers. Let S be any finitely supported set of bounded cardinality and use v to range over members
of S. Write A{v/x} for the substitution of v for x in A, and assume this substitution function is equivariant.
Then we define 8x 2 S .A as

V

v2S A{v/x}. There is not necessarily a common finite support for the
formulas A{v/x}, for example if S is some term algebra over names, but the set {A{v/x} : v 2 S} has
finite support bounded by {x}[supp(S)[supp(A). In our examples in Section 6, substitution is defined
inductively on the structure of formulas, based on primitive substitution functions for actions and state
predicates, avoiding capture and preserving the binding names of actions.

Existential quantification 9x 2 S .A is defined as the dual ¬8x 2 S .¬A. When X is a metavariable
used to range over a nominal set X , we simply write X for “X 2 X ”. As an example, 8a .A means that
the formula A{n/a} holds for all names n 2 N .

New name quantifier. The new name quantifier Nx.A intuitively states that P |= A{n/x} holds where n
is a fresh name for P. For example, suppose we have actions of the form ab for input, and ab for output
where a and b are free names, then the formula Nx.[ax]hbxi> expresses that whenever a process inputs a
fresh name x on channel a, it has to be able to output that name on channel b. If the name received is not

48

6 Modal Logics for Nominal Transition Systems

fresh (i.e., already present in P) then P is not required to do anything. Therefore this formula is weaker
than 8x . [ax]hbxi>.

To define this formally we use name permutation rather than substitution. Since A and P have finite
support, if P |= (xn) ·A holds for some n fresh for P, by equivariance it also holds for almost all n,
i.e., all but finitely many n. Conversely, if it holds for almost all n, it must hold for some n#supp(P).
Therefore Nx is often pronounced “for almost all x”. In other words, P |= Nx.A holds if {x |P |= A(x)}
is a cofinite set of names [24, Definition 3.8]. Letting COF = {S ✓ N |N \S is finite} we thus encode
Nx.A as

W

S2COF

V

n2S(xn)·A. This formula states there is a cofinite set of names such that for all of them
A holds. The support of

V

n2S(xn)·A is bounded by (N \S)[supp(A) where S 2 COF, and the support
of the encoding

W

S2COF

V

n2S(xn)·A is bounded by supp(A).

Next step. We generalise the action modality to sets of actions in the following way. If T is a finitely
supported set of actions such that bn(a)#A for all a 2 T , we write hT iA for

W

a2T haiA. The support
of the set {haiA : a 2 T} is bounded by supp(T)[supp(A) and thus finite. Dually, we write [T]A for
¬hT i¬A, denoting that A holds after all transitions with actions in T .

To encode the next-step modality, we let ACTA = {a : bn(a)#A}. Noting that supp(ACTA)✓ supp(A)
is finite, we write hiA for hACTAiA, meaning that we can make some (non-capturing) transition to a state
where A holds. As an example, hi> means that the current state is not deadlocked. The dual modality
[]A = ¬hi¬A means that A holds after every transition from the current state. Larsen [17] uses the same
approach to define next-step operators in HML, though his version is less expressive since he uses a finite
action set to define the next-step modality.

Fixpoints. Fixpoint operators are a way to introduce recursion into a logic. For example, they can be
used to concisely express safety and liveness properties of a transition system, where by safety we mean
that some invariant holds for all reachable states, and by liveness that some property will eventually
hold. Kozen (1983) [16] introduced the least (µX .A) and the greatest (nX .A) fixpoints in modal logic.
Intuitively, the least fixpoint states a property that holds for states of a finite path, while the greatest holds
for states of an infinite path.

Theorem 11. The least and greatest fixpoint operators are expressible in our HML.

For the full proofs and definitions, see the appendix. The idea is to start with an extended language
with the forms µX .A and X , where X ranges over a countable set of variables and all occurrences of X
in A are in the scope of an even number of negations. Write A(B) for the capture-avoiding substitution
of B for X in A, and let A0(B) = B and Ai+1(B) = A(Ai(B)). Then the encoding of a least fixpoint
µX .A is

W

i2N Ai(?), given that fixpoints have been recursively expanded in A. The disjunction has finite
support supp(A), since substitution is equivariant. When interpreting formulas as elements of the power-
set lattice of STATES, this encoding yields a fixpoint of A(·): the sequence of formulas Ai(?) yields
an approximation from below. We define the greatest fixpoint operator nX .A in terms of the least as
¬µX .¬A(¬X).

Using the greatest fixpoint operator we can state global invariants: nX .[a]X ^A expresses that A
holds along all paths labelled with a . Temporal operators such as eventually can also be encoded using
the least fixpoint operator: the formula µX .haiX _A states that eventually A holds along some path
labelled with a . We can freely mix the fixpoint operators to obtain formulas like nX .[a]X ^ (µY.hb iY _
A) which means that for each state along any path labelled with a , a state where A holds is reachable
along a path labelled with b . Formulas with mixed fixpoint combinators are very expressive, and with
the next operator they can encode the branching-time logic CTL⇤ [11].

49

Parrow, Borgström, Eriksson, Gutkovas, Weber 7

5 Logics for variants of bisimilarity

The bisimilarity of Section 3 is of the early kind: any substitutive effect of an input (typically replacing a
variable with the value received) must have manifested already in the action corresponding to the input,
since we apply no substitution to the target state. Alternative treatments of substitutions include late-,
open- and hyperbisimilarity, where the input action instead contains the variable to be replaced, and there
are different ways to make sure that bisimulations are preserved by relevant substitutions.

In our definition of nominal transition systems there are no particular input variables in the states
or in the actions, and thus no a priori concept of “substitution”. We therefore choose to formulate the
alternatives using so called effect functions. An effect is simply a finitely supported function from states
to states. For example, in the monadic pi-calculus the effects would be the functions replacing one name
by another. In a value-passing calculus the effects would be substitutions of values for variables. In
the psi-calculi framework the effects would be sequences of parallel substitutions. Our definitions and
results are applicable to any of these; our only requirement is that the effects form a nominal set which we
designate by F . Variants of bisimilarity then correspond to requiring continuation after various effects.
For example, if the action contains an input variable x then the effects appropriate for late bisimilarity
would be substitutions for x.

We will formulate these variants as F/L-bisimilarity, where F (for first) represents the set of effects
that must be observed before following a transition, and L (for later) is a function that represents how
this set F changes depending on the action of a transition, i.e., L(a,F) is the set of effects that must
follow the action a if the previous effect set was F . In the following let Pfs(F) ranged over by F be
the finitely supported subsets of F , and L range over equivariant functions from actions and Pfs(F) to
Pfs(F).

Definition 12. An L-bisimulation where L : ACT⇥Pfs(F)! Pfs(F) is a Pfs(F)-indexed family of
symmetric binary relations on states satisfying the following:

If RF(P,Q) then:

1. Static implication: for all f 2 F it holds that f (P) ` j implies f (Q) ` j .

2. Simulation: For all f 2 F and a,P0 such that bn(a)# f (Q) there exist Q0 such that

if f (P) a�! P0 then f (Q)
a�! Q0 and RL(a,F)(P0,Q0)

We write P
F/L⇠ Q, called F/L-bisimilarity, to mean that there exists an L-bisimulation R such that

RF(P,Q).

Most strong bisimulation varieties can be formulated as F/L-bismilarity. Write idSTATES for the
identity function on states, ID for the singleton set {idSTATES} and allID for the constant function
l (a,F).ID.

• Early bisimilarity, precisely as defined in Definition 2, is ID/allID-bisimilarity.

• Early equivalence, i.e. early bisimilarity under all possible effects, is F /allID-bisimilarity.

• Late bisimilarity is ID/L-bisimilarity, where L(a,F) yields the effects that represent substitutions
for variables in input actions a (and ID for other actions).

• Late equivalence is similarly F /L-bisimilarity.

• Open bisimilarity is F /L-bisimilarity where L(a,F) is the set F minus all effects that change
bound output names in a .

50

8 Modal Logics for Nominal Transition Systems

• Hyperbisimilarity is F /l (a,F).F -bisimilarity.

All of the above are generalizations of known and well-studied definitions. The original value-
passing variant of CCS [18] uses early bisimilarity. The original bisimilarity for the pi-calculus is of
the late kind [19], where it also was noted that late equivalence is the corresponding congruence. Early
bisimilarity and equivalence and open bisimilarity for the pi-calculus were introduced in 1993 [20, 25],
and hyperbisimilarity for the fusion calculus in 1998 [22].

In view of this we only need to provide a modal logic adequate for F/L-bisimilarity; it can then
immediately be specialized to all of the above variants. For this we introduce a new kind of logical
operator as follows.

Definition 13. For each f 2 F the logical unary effect consequence operator h f i has the definition

P |= h f iA if f (P) |= A

Thus the formula h f iA means that A holds if the effect f is applied to the state. Note that by definition
this distributes over conjunction and negation, e.g. P |= ¬h f iA iff P |= h f i¬A iff not f (P) |= A etc. The
effect consequence operator is similar in spirit to the action modalities: both h f iA and haiA assert that
something (an effect or action) must be possible and that A holds afterwards. Indeed, effects can be
viewed as a special case of transitions (as formalised in Definition 17 below) which is why we give the
operators a common syntactic appearance.

Now define the formulas that can directly use effects from F and after actions use effects according
to L, ranged over by AF/L, in the following way:

Definition 14. Given L as in Definition 12, for all F 2Pfs(F) define A F/L as the set of formulas given
by the mutually recursive definitions:

AF/L ::=
^

i2I
AF/L

i | ¬AF/L | h f ij | h f ihaiAL(a,F)/L

where we require f 2 F and that the conjunction has bounded cardinality and finite support.

Let P
F/L
= Q mean that P and Q satisfy the same formulas in A F/L.

Theorem 15. P
F/L⇠ Q , P

F/L
= Q

Proof: The direction) is a generalization of Theorem 7. The other direction is a generalization of

Theorem 10: we prove that
F/L
= is an F/L-bisimulation. It needs a variant of Lemma 9:

Lemma 16. If A 2 A F/L is a distinguishing formula for P and Q, then there exists a distinguishing
formula B 2 A F/L for P and Q such that supp(B)✓ supp(P,F).

The proof is an easy generalisation of Lemma 9.
An alternative to the effect consequence operators is to transform the transition system such that

standard (early) bisimulation on the transforms coincides with F/L-bisimilarity. The idea is to let the
effect function be part of the transition relation, thus f (P) = P0 becomes P

f�! P0.

Definition 17. Assume F and L as above. The L-transform of a nominal transition system T is a nominal
transition system where:

• The states are of the form AC(F, f (P)) and EF(F,P), for f 2 F 2 Pfs(F) and states P of T. The
intuition is that states of kind AC can perform ordinary actions, and states of kind EF can commit
effects.

51

Parrow, Borgström, Eriksson, Gutkovas, Weber 9

• The state predicates are those of T.

• AC(F,P) ` j if in T it holds P ` j , and EF(F,P) ` j never holds.

• The actions are the actions of T and the effects in F .

• bn is as in T, and additionally bn(f) = /0 for f 2 F .

• The transitions are of two kinds. If in T it holds P a�! P0, then there is a transition AC(F,P) a�!
EF(L(a,F),P0). And for each f 2 F it holds EF(F,P)

f�! AC(F, f (P)).

Theorem 18. P
F/L⇠ Q in T if and only if EF(F,P) ·⇠ EF(F,Q) in the L-transform of T.

The proof idea is that from an F/L-bisimulation in T it is easy to construct an (ordinary) bisimulation

in the L-transform of T, and vice versa. A direct consequence is that P
F/L⇠ Q iff EF(F,P) ·

= EF(F,Q) in
the L-transform of T. Here the actions in the logic would include effects f 2 F .

6 Related work and examples

HML for CCS. The first published HML is Hennessy and Milner (1985) [15]. They use finite (binary)
conjunction with the assumption of image-finiteness for ordinary CCS. The same goes for the value-
passing calculus and logic by Hennessy and Liu (1995) [14], where image-finiteness is due to a late
semantics and the logic contains quantification over data values. A similar idea and argument is in a
logic for LOTOS by Calder et al. (2002) [8], though that only considers stratified bisimilarity up to w .

Hennessy and Liu’s value-passing calculus is based on abstractions (x)P and concretions (v,P) where
v is drawn from a set of values. To encode their logic in ours, we add effects idSTATES and ?v, with
?v((x)P) = P{v/x}, and transitions (v,P) !v�! P. Letting L(a?,) = {?v : v 2 values} and L(a,) =
{idSTATES} otherwise, late bisimilarity is {idSTATES}/L-bisimilarity as defined in Section 5. We can
then encode their universal quantifier 8x.A as

V

vh?viA{v/x}, which has support supp(A)\{x}, and their
output modality hc!xiA as hc!i

W

vh!viA{v/x}, with support {c}[(supp(A)\{x}).
An infinitary HML for CCS is discussed in Milner’s book (1989) [18], where also the process syntax

contains infinite summation. There are no restrictions on the indexing sets and no discussion about
how this can exhaust all names. The adequacy theorem is proved by stratifying bisimilarity and using
transfinite induction over all ordinals, where the successor step basically is the contraposition of the
argument in Theorem 10, though without any consideration of finite support. A more rigorous treatment
of the same ideas is by Abramsky (1991) [3] where uniformly bounded conjunction is used throughout.

Pi-calculus. The first HML for the pi-calculus is by Milner et al. (1993) [20], where infinite conjunction
is used in the early semantics and conjunctions are restricted to use a finite set of free names. The
adequacy proof is of the same structure as in this paper. The logic defined in this paper, applied to the
pi-calculus transition system omitting bound input actions x(y), contains the logic F of Milner et al., or
the equipotent logic FM if we take the set of name matchings [a = b] as state predicates.

Spi Calculus. Frendrup et al. (2002) [12] provide three Hennessy-Milner logics for the spi calculus [2].
The action modalities in Frendrup’s logic only uses parts of the labels: on process output, the modality
hai tests only the channel used. On process input, the modality hax i describes how the observer s

computed the received message M = e(x s), where x is an expression that may contain decryptions
and projections, and supp(x) \ dom(s) is fresh for P and s . Simplifying the labels of the transition

52

10 Modal Logics for Nominal Transition Systems

system to t and the aforementioned a and ax labels, our minimal HML applied to the particular nominal
transition system of the spi calculus coincides with the logic F of Frendrup et al, although the latter
uses infinite conjunction without any mechanism to prevent formulas from exhausting all names, leaving
none available for alpha-conversion. Thus their notion of substitution is not formally well defined.

Their logic E M replaces the simple input modality by an early input modality ha(x)iEA, which
(after a minor manipulation of the input labels) can be encoded as the conjunction

V

x

hax iA{x/x}, which
has support supp(A)\{x}. We do not consider their logic L M that uses a late input modality, since its
application relies on sets that do not have finite support [12, Theorem 6.12], which are not meaningful in
nominal logic.

Applied Pi-calculus. A more recent work is a logic by Pedersen (2006) [23] for the applied pi-calculus [1],
where the adequacy theorem uses image-finiteness of the semantics in the contradiction argument. The
logic contains atomic formulae for equality in the frame of a process, corresponding to our state predi-
cates. The main difference to our logic is an early input modality and a quantifier 9x.

Their early input modality ha(x)iA can be straightforwardly encoded as the conjunction
V

MhaMiA{M/x},
with support {a}[(supp(A)\{x}). For the existential quantifier, there is a requirement that the received
term M can be computed from the current knowledge available to an observer of the process, which

we here write M 2 S (P). We add actions M/x with bn(M/x) = x and transitions P
M/x��! P | {M/x} if

M 2 S (P) and x#P. We can then encode 9x.A as
W

MhM/xiA, which has support supp(A)\{x}.

Fusion calculus. In a HML for the fusion calculus by Haugstad et al. (2006) [13] the fusions (i.e.,
equality relations on names) are action labels j . The corresponding modal operator hjiA has the se-
mantics that the formula A must be satisfied for all substitutive effects of j (intuitively, substitutions
that map each name to a fixed representative for its equivalence class). The adequacy theorem uses the
contradiction argument with infinite conjunction, with no argument about finiteness of names for the
distinguishing formula. This HML can be encoded in our framework by making the substitutive effects
of fusion actions visible in the transition system.

Concurrent constraint pi calculus. The concurrent constraint pi calculus (CC-pi) by Buscemi and
Montanari (2007) [6] extends the explicit fusion calculus [27] with a more general notion of constraint
stores c. The reference equivalence for CC-pi is open bisimulation [7] (closely corresponding to hyper-
bisimulation in the fusion calculus [22]), which differs from labelled bisimulation in two ways: First, two
equivalent processes must be equivalent under all store extensions. To encode this, we let the effects F
be the set of constraint stores c different from 0, and let c(P) = c | P. Second, when simulating a labelled

transition P a�! P0, the simulating process Q can use any transition Q
b�! Q0 with an equivalent label, as

given by a state predicate a = b . As an example, if a = ahxi is a free output label then P ` a = b

iff b = bhyi where P ` a = b and P ` x = y. To encode this, we transform the labels of the transition

system by replacing them with their equivalence classes, i.e., P a�! P0 becomes P
[a]P��! P0 where b 2 [a]P

iff P ` b = a . Hyperbisimilarity (Definition 12) on this transition system then corresponds to open
bisimilarity, and the modal logic defined in Section 5 is adequate.

Nominal transition systems. De Nicola and Loreti (2008) [10] define a general format for nominal
transition systems and an associated modal logic, that is adequate for image-finite transition systems
only and uses several different modalities for name revelation and resource consumption. In contrast, we
seek a small and expressive HML for general nominal transition systems. Indeed, the logic of De Nicola

53

Parrow, Borgström, Eriksson, Gutkovas, Weber 11

and Loreto can be seen as a special case of ours: their different transition systems can be merged into a
single one, and we can encode their quantifiers and fixpoint operator as described in Section 4. Nominal
SOS of Cimini et al. (2012) [9] is also a special case of nominal transition systems.

Psi-calculi. In psi-calculi by Bengtson et al (2011) [4], the labelled transitions take the form Y . P a�! P0,
where the assertion environment Y is unchanged after the step. We model this as a nominal transition
system by letting the set of states be pairs (Y,P) of assertion environments and processes, and define
the transition relation by (Y,P) a�! (Y,P0) if Y . P a�! P0. The notion of bisimulation used with psi-
calculi also uses an assertion environment and is required to be closed under environment extension,
i.e., if Y . P ⇠ Q, then Y⌦Y0 . P ⇠ Q for all Y0. We let the effects F be the set of assertions, and
define Y((Y0,P)) = (Y⌦Y0,P). Hyperbisimilarity on this transition system then subsumes the standard
psi-calculi bisimilarity, and the modal logic defined in Section 5 is adequate.

7 Conclusion

We have given a general account of transition systems and Hennessy-Milner Logic using nominal sets.
The advantage of our approach is that it is more expressive than previous work. We allow infinite con-
junctions that are not uniformly bounded, meaning that we can encode e.g. quantifiers and the next-step
operator. We have given ample examples of how the definition captures different variants of bisimilarity
and how it relates to many different versions of HML in the literature.

We have formalized the results of Section 3, including Theorems 7 and 10, using Nominal Is-
abelle [26].1 Nominal Isabelle is an implementation of nominal logic in Isabelle/HOL [21], a popular
interactive proof assistant for higher-order logic. It adds convenient specification mechanisms for, and
automation to reason about, datatypes with binders.

However, Nominal Isabelle does not directly support infinitely branching datatypes. Therefore, the
mechanization of formulas (Definition 4) was challenging. We construct formulas from first principles in
higher-order logic, by defining an inductive datatype of raw formulas (where alpha-equivalent raw for-
mulas are not identified). The datatype constructor for conjunction recurses through sets of raw formulas
of bounded cardinality, a feature made possible only by a recent re-implementation of Isabelle/HOL’s
datatype package [5].

We then define alpha-equivalence of raw formulas. For finitely branching datatypes, alpha-equivalence
is based on a notion of free variables. Here, to obtain the correct notion of free variables of a conjunction,
we define alpha-equivalence and free variables via mutual recursion. This necessitates a fairly involved
termination proof. (All recursive functions in Isabelle/HOL must be terminating.) To obtain formulas,
we quotient raw formulas by alpha-equivalence, and finally carve out the subtype of all terms that can
be constructed from finitely supported ones. We then prove important lemmas; for instance, a strong
induction principle for formulas that allows the bound names in haiA to be chosen fresh for any finitely
supported context.

Our development, which in total consists of about 2700 lines of Isabelle definitions and proofs,
generalizes the constructions that Nominal Isabelle performs for finitely branching datatypes to a type
with infinite branching. To our knowledge, this is the first mechanization of an infinitely branching
nominal datatype in a proof assistant.

1Our Isabelle theories are available at https://github.com/tjark/ML-for-NTS.

54

12 Modal Logics for Nominal Transition Systems

Acknowledgements

We thank Andrew Pitts for enlightening discussions on nominal datatypes with infinitary constructors,
and Dmitriy Traytel for providing a formalization of cardinality-bounded sets.

References

[1] Martı́n Abadi & Cédric Fournet (2001): Mobile Values, New Names, and Secure Communication. In: Pro-
ceedings of POPL ’01, ACM, pp. 104–115.

[2] Martı́n Abadi & Andrew D. Gordon (1999): A Calculus for Cryptographic Protocols: The Spi Calculus.
Journal of Information and Computation 148(1), pp. 1–70.

[3] Samson Abramsky (1991): A Domain Equation for Bisimulation. Journal of Information and Computa-
tion 92(2), pp. 161–218, doi:10.1006/inco.1991.9999. Available at http://dx.doi.org/10.1006/inco.
1991.9999.

[4] Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2011): Psi-calculi: a frame-
work for mobile processes with nominal data and logic. Logical Methods in Computer Science 7(1),
doi:10.2168/LMCS-7(1:11)2011. Available at http://dx.doi.org/10.2168/LMCS-7(1:11)2011.

[5] Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei Popescu & Dmitriy
Traytel (2014): Truly Modular (Co)datatypes for Isabelle/HOL. In Gerwin Klein & Ruben Gamboa, editors:
Proceedings of ITP 2014, LNCS 8558, Springer, pp. 93–110, doi:10.1007/978-3-319-08970-6 7. Available
at http://dx.doi.org/10.1007/978-3-319-08970-6_7.

[6] Maria Grazia Buscemi & Ugo Montanari (2007): CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In Rocco De Nicola, editor: Proceedings of ESOP 2007, LNCS 4421, Springer, pp.
18–32.

[7] Maria Grazia Buscemi & Ugo Montanari (2008): Open Bisimulation for the Concurrent Constraint Pi-
Calculus. In Sophia Drossopoulou, editor: Proceedings of ESOP 2008, LNCS 4960, Springer, pp. 254–268,
doi:10.1007/978-3-540-78739-6 20. Available at http://dx.doi.org/10.1007/978-3-540-78739-6_
20.

[8] Muffy Calder, Savi Maharaj & Carron Shankland (2002): A modal logic for full LOTOS based on symbolic
transition systems. The Computer Journal 45(1), pp. 55–61.

[9] Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers & Murdoch J. Gabbay (2012): Nominal
SOS. Electron. Notes Theor. Comput. Sci. 286, pp. 103–116, doi:10.1016/j.entcs.2012.08.008. Available at
http://dx.doi.org/10.1016/j.entcs.2012.08.008.

[10] Rocco De Nicola & Michele Loreti (2008): Multiple-Labelled Transition Systems for nominal
calculi and their logics. Mathematical Structures in Computer Science 18(1), pp. 107–143,
doi:10.1017/S0960129507006585. Available at http://dx.doi.org/10.1017/S0960129507006585.

[11] E. Allen Emerson (1997): Model checking and the Mu-calculus. In: DIMACS Series in Discrete Mathemat-
ics, American Mathematical Society, pp. 185–214.

[12] Ulrik Frendrup, Hans Hüttel & Jesper Nyholm Jensen (2002): Modal Logics for Cryptographic Processes.
Electr. Notes Theor. Comput. Sci. 68(2), pp. 124–141. Available at http://dx.doi.org/10.1016/

S1571-0661(05)80368-8.
[13] Arild Martin Møller Haugstad, Anders Franz Terkelsen & Thomas Vindum (2006): A Modal Logic for the

Fusion Calculus. Unpublished, University of Aalborg.
[14] M. Hennessy & X. Liu (1995): A modal logic for message passing processes. Acta Informatica 32(4), pp.

375–393, doi:10.1007/BF01178384. Available at http://dx.doi.org/10.1007/BF01178384.
[15] Matthew Hennessy & Robin Milner (1985): Algebraic Laws for Nondeterminism and Concurrency. J. ACM

32(1), pp. 137–161. Available at http://doi.acm.org/10.1145/2455.2460.

55

Parrow, Borgström, Eriksson, Gutkovas, Weber 13

[16] Dexter Kozen (1983): Results on the propositional mu-calculus. Theoretical Computer Science 27(3), pp. 333
– 354, doi:http://dx.doi.org/10.1016/0304-3975(82)90125-6. Available at http://www.sciencedirect.
com/science/article/pii/0304397582901256. Special Issue Ninth International Colloquium on Au-
tomata, Languages and Programming (ICALP) Aarhus, Summer 1982.

[17] Kim G. Larsen (1988): Proof systems for Hennessy-Milner Logic with recursion. In M. Dauchet & M. Nivat,
editors: Proceedings of CAAP ’88, LNCS 299, Springer, pp. 215–230, doi:10.1007/BFb0026106. Available
at http://dx.doi.org/10.1007/BFb0026106.

[18] Robin Milner (1989): Communication and Concurrency. Prentice Hall.
[19] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I. Inf. Com-

put. 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4. Available at http://dx.doi.org/10.1016/
0890-5401(92)90008-4.

[20] Robin Milner, Joachim Parrow & David Walker (1993): Modal logics for mobile processes. Theoretical
Computer Science 114(1), pp. 149 – 171, doi:10.1016/0304-3975(93)90156-N. Available at http://www.
sciencedirect.com/science/article/pii/030439759390156N.

[21] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. LNCS 2283, Springer, doi:10.1007/3-540-45949-9. Available at http://dx.doi.org/10.
1007/3-540-45949-9.

[22] Joachim Parrow & Björn Victor (1998): The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In: Proceedings of LICS 1998, pp. 176–185, doi:10.1109/LICS.1998.705654. Available at http:
//dx.doi.org/10.1109/LICS.1998.705654.

[23] Michael Pedersen (2006): Logics for the Applied pi calculus. Master’s thesis, Aalborg University. BRICS
RS-06-19.

[24] Andrew M. Pitts (2013): Nominal Sets. Cambridge University Press. Available at http://dx.doi.org/
10.1017/CBO9781139084673. Cambridge Books Online.

[25] Davide Sangiorgi (1993): A theory of bisimulation for the p-calculus. In Eike Best, editor: Proceedings
of CONCUR ’93, LNCS 715, Springer, pp. 127–142, doi:10.1007/3-540-57208-2 10. Available at http:
//dx.doi.org/10.1007/3-540-57208-2_10.

[26] Christian Urban & Cezary Kaliszyk (2012): General Bindings and Alpha-Equivalence in Nominal Isabelle.
Logical Methods in Computer Science 8(2), doi:10.2168/LMCS-8(2:14)2012. Available at http://dx.
doi.org/10.2168/LMCS-8(2:14)2012.

[27] Lucian Wischik & Philippa Gardner (2005): Explicit fusions. Theoretical Computer Science 304(3), pp.
606–630.

A Appendix: Proofs

Proofs from Section 3

Proposition 3 ·⇠ is an equivariant equivalence relation.
Proof: The proof has been formalized in Isabelle. Equivariance is a simple calculation, based on the

observation that if R is a bisimulation, then p ·R is a bisimulation. To prove reflexivity of ·⇠, we note that
equality is a bisimulation. Symmetry is immediate from Def. 2. To prove transitivity, we show that the
composition of ·⇠ with itself is a bisimulation; the simulation requirement is proved by a considering an
alpha-variant of P a�! P0 where bn(a) is fresh for Q.

Lemma 19. |= is equivariant.

Proof: By the Equivariance Principle in Pitts (2013) [24, page 21]. A more detailed proof that verifies
P |= A () p ·P |= p ·A for any permutation p has been formalized in Isabelle. The proof proceeds

56

14 Modal Logics for Nominal Transition Systems

by structural induction on A, using equivariance of all involved relations. For the case haiA in particular,
we use the fact that if ha 0iA0 = haiA, then hp ·a 0i(p ·A0) = hp ·ai(p ·A).

Theorem 7 P ·⇠ Q =) P ·
= Q

Proof: The proof has been formalized in Isabelle. Assume P ·⇠ Q. We show P |= A () Q |= A by
structural induction on A.

1. Base case: A = j . Then P |= A () P ` j () Q ` j () Q |= A by static implication and
symmetry of ·⇠.

2. Inductive steps
V

i2I Ai and ¬A: immediate by induction.

3. Inductive step haiA: Assume P |= haiA. Then for some alpha-variant ha 0iA0 = haiA, 9P0 .P a

0
�!

P0 and P0 |= A0. Without loss of generality we assume also bn(a 0)#Q, otherwise just find an alpha-
variant of ha 0iA0 where this holds. Then by simulation 9Q0 .Q a

0
�! Q0 and P0 ·⇠ Q0. By induction

and P0 |= A0 we get Q0 |= A0, whence by definition Q |= haiA. The proof of Q |= haiA =)
P |= haiA is symmetric, using the fact that P ·⇠ Q entails Q ·⇠ P.

Lemma 9 If A is a distinguishing formula for P and Q, then there exists a distinguishing formula B for
P and Q such that supp(B)✓ supp(P).

Proof: The proof has been formalized in Isabelle. We use the fact that a conjunction is well-formed
if the set of conjuncts has finite support—this is much more liberal than that each conjunct has the same
finite support. Assume P |= A and not Q |= A. Let S be the group of name permutations of names outside
supp(P) and let B be the S-orbit of A, i.e.,

B = {p ·A |p 2 S}

Clearly p

0 ·B = B for all p

0 2 S, thus supp(B) ✓ supp(P), which means that the formula B =
V

B is
well-formed and supp(B)✓ supp(P). By equivariance, if P |= A and p 2 S then also P |= p ·A. Therefore
P |= B. Furthermore, since the identity permutation is in S and not Q |= A we get not Q |= B.

Theorem 10 P ·
= Q =) P ·⇠ Q

Proof: The proof has been formalized in Isabelle. We establish that ·
= is a bisimulation. Obviously

it is symmetric. So assume P ·
= Q, we need to prove the two requirements on a bisimulation.

1. Static implication. P ` j iff P |= j iff Q |= j iff Q ` j .

2. Simulation. The proof is by contradiction. Assume that ·
= does not satisfy the simulation re-

quirement. Then there exist P,Q,P0,a with bn(a)#Q such that P ·
= Q and P a�! P0 and, letting

Q = {Q0 |Q a�! Q0}, for all Q0 2 Q it holds that P0 6 ·= Q0. Assume bn(a)#P, othertwise just find an
alpha-variant of the transition satisfying this. By P0 6 ·= Q0, for all Q0 2 Q there exists a distinguish-
ing formula for P0 and Q0. The formula may depend on Q0, and by Lemma 9 we can find such a
distinguishing formula BQ0 for P0 and Q0 with supp(BQ0)✓ supp(P0). Therefore the formula

B =
^

Q02Q

BQ0

is well-formed with support included in supp(P0). We thus get that P |= haiB but not Q |= haiB,
contradicting P ·

= Q.

57

Parrow, Borgström, Eriksson, Gutkovas, Weber 15

Proofs from Section 4 on fixpoint operators

Definition 20. We extend the nominal set of formulas with the least fixpoint operator:

A ::=
^

i2I
Ai | ¬A | j | haiA | X | µX .A

where X is ranges over a countable set of equivariant variables. We require that all occurrences of a
variable X in a formula µX .A are in the scope of an even number of negations.

We use a capture-avoiding substitution function on formulas [A/X] that substitutes A for the variable
X. In particular, (haiB)[A/X] = hai(B[A/X]) when bn(a) is fresh for A.

To encode the fixpoint operators, we first give a semantics to formulas (including fixpoints) as sets
of states.
Definition 21. A valuation function e is a map from variables to finitely supported sets of states, such
that e(X) is the empty set for all but finitely many X. We define the interpretation function as follows:

JVi2I AiKe

=
T

i2IJAiKe

J¬AK
e

= STATES� JAK
e

JjK
e

= {P |P ` j}
JhaiAK

e

=
n

P |9P0 .P a�! P0 and P0 2 JAK
e

o

JXK
e

= e(X)

JµX .AK
e

=
T

n

S 2 Pfs(STATES) | JAK
e[X 7!S] ✓ S

o

Note that J·K· is equivariant, so the intersections defining JVi2I AiKe

and JµX .AK
e

are finitely supported.

Lemma 22. Let A be a formula as defined in Definition 4, then P |= A if and only if P 2 JAK
e

.

Proof. By induction on A.

Similarly to the Knaster-Tarksi fixpoint theorem, the least fixpoint lfp(F) of a finitely supported
function F on the lattice of finitely supported subsets of a nominal set X can be computed by taking the
intersection of all pre-fixpoints (i.e., finitely supported sets S such that F(S) ✓ S). (Note that the usual
Tarski fixpoint theorem does not apply, since this lattice is not continuous in general.)
Lemma 23. If X is a nominal set and F : Pfs(X)! Pfs(X) is monotonic and finitely supported, then

the least fixpoint of F is given by
T

n

S 2 Pfs(X) |F(S)✓ S
o

.

Proof. Let A =
�

S 2 Pfs(X) |F(S)✓ S

. Note that X 2 A, that A has finite support (bounded by
supp(F)), and that A contains all fixpoints of F . Let C =

T

A; note that supp(C)✓ supp(A) is finite and
that C is a subset of any fixpoint of F . Since C ✓ S for all S2A, we have F(C)✓

T

S2A F(S)✓
T

S2A S=C.
From F(C)✓C and monotonicity we get F(F(C))✓ F(C), so F(C) 2 A and we get C ✓ F(C) by con-
struction. From F(C)✓C ✓ F(C) we get C = F(C), so C is indeed the least fixpoint of F .

We thus only need to show that F(S) = JAK
e[X 7!S] is monotonic in order for the interpretation of the

least fixpoint formula µX .A to indeed denote the least fixpoint.
Lemma 24. The function F(S) = JAK

e[X 7!S] is monotonic for a closed formula µX .A.

Proof. Assume S ✓ T for finitely supported sets of states S and T . We need to show that JAK
e[X 7!S] ✓

JAK
e[X 7!T]. We proceed by structural induction on A.

58

16 Modal Logics for Nominal Transition Systems

Case j: Since X does not occur in j , JjK
e[X 7!S] = JjK

e

✓ JjK
e

= JjK
e[X 7!T].

Case X 0: If X = X 0, then e[X 7! S](X) = S ✓ T = e[X 7! T](X) by assumption. Otherwise e(X) = e(X)
by reflexivity of ✓.

Case ¬A: As induction hypothesis we have JAK
e[X 7!S] ✓ JAK

e[X 7!T]. We consider two cases. If X does not
occur in A, then J¬AK

e[X 7!S] = J¬AK
e

and J¬AK
e[X 7!T] = J¬AK

e

, and by reflexivity of ✓ we are done
in this case. Otherwise, the X occurs in A and is in scope of one ¬, we know JAK

e[X 7!T] ✓ JAK
e[X 7!S],

therefore J¬AK
e[X 7!S] = STATES� JAK

e[X 7!S] ✓ STATES� JAK
e[X 7!T] = J¬AK

e[X 7!S].

Case haiA: Since, from induction hypothesis, JAK
e[X 7!S] ✓ JAK

e[X 7!T], it is easy to see that JhaiAK
e[X 7!S]

contains at least the state of JhaiAK
e[X 7!T], that is, the former is the subset of latter.

Case
V

i2I Ai: By induction hypothesis, for every i 2 I, JAiK
e[X 7!S] ✓ JAiK

e[X 7!S]. Thus, JVi2I AiK
e[X 7!S] =

T

i2IJAiK
e[X 7!S] ✓

T

i2IJAiK
e[X 7!T] = JVi2I AiK

e[X 7!T].

Case µX 0.A: In case X = X 0 and by induction hypothesis JAK
e[X 7!S] ✓ JAK

e[X 7!T], JµX 0.AK
e[X 7!S] =

T

�

S0 2 Pfs(STATES) | JAK
e[X 7!S][X 0 7!S0] ✓ S0

✓ JµX 0.AK
e[X 7!T]. In case X 0 6=X , then JµX 0.AK

e[X 7!S] =
JµX 0.AK

e

and similarly for the set T , thus by reflexivity of ✓ we conclude the proof case.

The least fixpoint operator can be directly expressed in our logic of Section 3. The idea here is
simple: we translate a fixpoint into an infinite disjunction that at each step i unrolls the recursion i times.
This then semantically corresponds to a limit of an w-chain generated by a monotonic function, i.e., the
least fixpoint.

expand0(µX .A) = ?
expandi+1(µX .A) = A[expandi(µX .A)/X]

µX .A =
W

i2w

expandi(µX .A)
X = X

V

i2I Ai =
V

i2I Ai ¬A = ¬A j = j haiA = haiA

Note that expandi is equivariant for all i. Thus, the disjunction in the fixpoint case is well-formed and
has support bounded by supp(A).

Theorem 25. For any formula A and valuation function e , JAK
e

= JAK
e

.

Proof. By structural induction over A.

Case µX .A We need to show that JµX .AK
e

= JµX .AK
e

. First, we compute the left-hand side to JµX .AK
e

=
JWi2w

expandi(µX .A)K
e

=
S

i2w

Jexpandi(µX .A)K
e

Second, define F(S) = JAK
e[X 7!S], and using

this we approximate the fixpoint from below with
S

i2w

Fi(/0)=
T

�

S 2 Pfs(STATES) | JAK
e[X 7!S] ✓ S

=
JµX .AK

e

.

We prove that the above expressions are equal by showing that the elements are equivalent at every
step, that is, Jexpand

i

(µX .A)K
e

= Fi(/0) for every i 2 w . The proof proceeds by induction on i.

59

Parrow, Borgström, Eriksson, Gutkovas, Weber 17

Base case: J?K
e

= /0 = F0(/0) by definition. Induction step:

Jexpandi+1(µX .A)K
e

= Jexpandi+1(µX .A)K
e

=
= JA[expandi(µX .A)/X]K

e

=
= JA[expandi(µX .A)/X]K

e

=
= JAK

e[X 7!Jexpandi(µX .A)K]
= JAK

e[X 7!Fi(/0)]
(By induction hypothesis)

= JAK
e[X 7!Fi(/0)]

(By induction hypothesis JAK
e

= JAK
e

for any e)
= F(Fi(/0))
= Fi+1(/0)

Other cases are trivial.

Proofs from Section 5

Theorem 15
P

F/L⇠ Q () P
F/L
= Q

Proof: Direction) is a generalization of Theorem 7.

1. Base case: A = h f ij and f 2 F . Then f (P) ` j . By static implication f (Q) ` j , which means
Q |= A.

2. Inductive step h f ihaiA where A 2 A F/L: Assume P |= h f ihaiA. Then 9P0 . f (P) a�! P0 and
P0 |= A. Without loss of generality we assume also bn(a)# f (Q), otherwise just find an alpha-

variant of the transition where this holds. Then by simulation 9Q0 . f (Q)
a�! Q0 and P0 L(a,F)/L⇠ Q0.

By induction and P0 |= A and A 2 A F/L we get Q0 |= A, whence by definition Q |= h f ihaiA.

The direction (is a generalization of Theorem 10: we prove that
F/L
= is an F/L-bisimulation. The

modified clauses are:

1. Static implication. Assume f 2 F , then f (P) ` j iff P |= h f ij iff Q |= h f ij iff f (Q) ` j .

2. Simulation. The proof is by contradiction. Assume that
F/L
= does not satisfy the simulation re-

quirement. Then there exist f 2 F,P,Q,P0,a such that P
F/L
= Q and f (P) a�! P0 and, letting

Q = {Q0 | f (Q)
a�! Q0}, for all Q0 2 Q it holds not P0 L(a,F)/L

= Q0. Choose bn(a)# f (P). Thus,
for all Q0 2 Q there exists a distinguishing formula in A L(a,F)/L for P0 and Q0. The formula may
depend on Q0, and by Lemma 16 we can find such a distinguishing formula BQ0 2A L(a,F)/L for P0

and Q0 with support in supp(P0,L(a,F))✓ supp(P,a,F). Therefore the formula

B =
^

Q02Q

BQ0

is well formed in A L(a,F)/L with support included in supp(P0,a,F). We thus get that P |= h f ihaiB
but not Q |= h f ihaiB, contradicting P

F/L
= Q.

60

18 Modal Logics for Nominal Transition Systems

Lemma 16 If A 2 A F/L is a distinguishing formula for P and Q, then there exists a distinguishing
formula B 2 A F/L for P and Q in such that supp(B)✓ supp(P,F).

Proof: by direct construction: in the terminology of Pitts [24] ch. 5, B is the conjunction of hullsupp(P,F)A.
To spell out the proof: Assume A 2 A F/L and P |= A and not Q |= A. Let S be the group of name per-
mutations of names outside supp(P,F) and let B be the S-orbit of A, i.e.

B = {p ·A |p 2 S}

Clearly p

0 ·B = B for all p

0 2 S, thus supp(B) ✓ supp(P,F), which means that the formula B =
V

B
is well formed and supp(B) ✓ supp(P,F). By equivariance, if P |= A and p 2 S then also P |= p ·A.
Therefore P |= B. Furthermore, since the identity permutation is in S and not Q |= A we get not Q |= B.
Finally, since L is equivariant we have supp(A F/L) ✓ supp(F), which means that p ·A 2 A F/L for all
p 2 S, this establishes B 2 A F/L.

Theorem 18 P
F/L⇠ Q in T if and only if EF(F,P) ·⇠ EF(F,Q) in the L-transform of T.

Proof: For the direction), assume that R is an L-bisimulation. Define R0 on the L-transform by
including (EF(F,P),EF(F,Q)) and (AC(F, f (P)),AC(F, f (Q))) for all P,Q, f ,F such that f 2 F and
RF(P,Q). We now prove R0 to be a simulation. Assume R0(S,T).

1. Static implication: Assume S ` j . Then S = AC(F, f (P)) for some F , f 2 F and P and f (P) ` j

holds in T, and T = AC(F, f (Q)) with RF(P,Q). Thus f (Q) ` j whence T ` j .

2. Simulation: Assume S a�! S0. There are two cases:
• S = EF(F,P)

f�! AC(F, f (P)) = S0 and f 2 F . Then T = EF(F,Q) where RF(P,Q). We get
T

f�! AC(F, f (Q)) = T 0 and R0(S0,T 0). Note here and below that bn(f) = /0.
• S= AC(F, f (P)) a�! EF(L(a,F),P0)= S0 and f (P) a�!P0, with bn(a)#AC(F, f (Q)). Then also

bn(a)# f (Q). We get T = AC(F, f (Q)) where RF(P,Q), so also f (Q)
a�!Q0 with RL(a,F)(P0,Q0).

Thus T a�! EF(L(a,F),Q0) = T 0, and R0(S0,T 0) as required.

For the direction (, assume that R0 is a bisimulation in the L-transform of T. Define RF by RF(P,Q) if
R0(EF(F,P),EF(F,Q)). We prove R an L-bisimulation. Assume RF(P,Q).

1. Static implication: Let f 2 F and assume f (P) ` j . Then EF(F,P)
f�! AC(F, f (P)). Since R0 is a

bisimulation we get EF(F,Q)
f�! AC(F, f (Q)). Now f (P) ` j means AC(F, f (P)) ` j , and again

since R0 is a bisimulation AC(F, f (Q)) ` j , which means f (Q) ` j as required.

2. Simulation: Assume f 2 F and f (P) a�! P0 with bn(a)# f (Q). Without loss of generality addi-
tionally assume the transition is represented by an alpha-variant such that bn(a)#F . We get the
transitions

EF(F,P)
f�! AC(F, f (P)) a�! EF(L(a,F),P0)

Since R0 is a bisimulation and bn(a)#F, f (Q) we get a simulating sequence

EF(F,Q)
f�! AC(F, f (Q))

a�! EF(L(a,F),Q0)

This means that f (Q)
a�! Q0 with RL(a,F)(P0,Q0) as required.

61

Submitted to:
MeMo 2015

c� F. Gadducci & F. Santini
This work is licensed under the
Creative Commons Attribution License.

Recovering a Labelled Semantics
for Soft CCP with Local Variables⇤

Fabio Gadducci
Dipartimento di Informatica,

Università di Pisa, Italy
gadducci@di.unipi.it

Francesco Santini
IIT-CNR,
Pisa, Italy

francesco.santini@iit.cnr.it

Extended Abstract. While the dynamics of a computational system is nowadays more often
specified operationally by means of a reduction system (RS), a labelled semantics is needed in
order to take advantage of the tools for checking observational properties and equivalences.
The methodological advance of the seminal paper [7] is the recognition that labelled semantics
should be derivable from reduction semantics in a uniform and systematic way. The proposal
of [7] is to build a labelled transition system (LTS) from a RS by identifying labels as the minimal

contexts needed to trigger a reduction.
Unfortunately, this notion of minimality, called relative pushout, proved to be di�cult to

check and apply, also for most basic calculi such as CCS [4, 8]. A recent proposal [5] suggests to
remove the requirement of minimality, in order to characterize a class of LTSs verifying weaker
coherence properties, yet ensuring the adequacy of the observational equivalence.

One of the testbed of the proposal has been Concurrent Constraint Programming (CCP) [9],
a language based on a shared-memory communication pattern: processes interact by either
posting or checking partial information, represented as constraints in a global store. CCP
belongs to the larger family of process calculi, thus a syntax-driven operational semantics
represents the computational steps. For example, the term tell(c) is the process that posts c in
the store, and the term ask(c) ! P is the process that executes P if c can be derived from the
information in the store.

The formalism is parametric with respect to the entailment relation. Under the name of
constraint system, the information recorded on the store is structured as a partial order (actually,
a lattice), where c d means that c can be derived from d. Under a few requirements over such
systems, CCP has been provided with (coincident) operational and denotational semantics.

A key aspect of CCP is the idempotency of constraint composition: adding an information
twice does not change the store. In the soft variant of the formalism (Soft CCP, SCCP [2]), con-
straint systems may distinguish the number of occurrences of a piece of information. Dropping
idempotency requires a full reworking of the theory. Although an operational semantics for
SCCP has been devised [2], neither the denotational nor the labelled one has been reintroduced.

The work in [9] establishes a denotational semantics for CCP and an equational theory for
infinite agents. More recently, in [1] the authors prove that the axiomatisation is underlying
a specific weak bisimilarity among agents, thus providing a clear operational understanding.
The key ingredients are a complete lattice as the domain of the store, with least upper bound
for constraint combination, and a notion of compactness such that domain equations for the
parallel composition of recursive agents are well-defined. The soft version [2] drops the upper
bound for combination in exchange of a monoidal operator. Thus, the domain is just a (not

⇤Research partially supported by the MIUR PRIN 2010LHT4KM CINA and 2010XSEMLC “Security Horizons”.

2 Recovering a Labelled Semantics for Soft CCP

hA,�0 ⌦9
x

�0i �! hB,�00i with �0 = � ÷ 9x

�0

h9�0
x

A,�i �! h9�1
x

B,�0⌦9x

�1i with �1 = �00 ÷ 9x

�0
Hide

hA,�0 ⌦�0[z/
x

]i ↵�! hB,�”i with �0 = � ÷ 9x

�0,x < sv(↵),z < f v(A)[sv(�)[sv(�0)

h9�0
x

A,�i ↵[x/
z

]�����! h9�1
x

B,�0⌦↵[x/
z

]⌦9
x

�1i with �1 = �” ÷ (↵⌦�0[z/
x

])
L-Hide

Table 1: Unlabelled and labelled version of the rule for the local hiding of variables.

necessarily complete) partial order, possibly with finite meets and a residuation operator (a
kind of inverse of the monoidal one) in order to account for algorithms concerning constraint
propagation. Indeed, the main use of SCCP has been in the generalisation of classical constraint
satisfaction problems, hence the lack of investigation about denotational semantics.

In [6] we connected the works on the soft [2] and the classical (also indicated in the literature
as “crisp”) [1, 9] paradigm by investigating a labelled (and an unlabelled) semantics for a
deterministic fragment of SCCP. In particular, the result was a mix of those investigated in the
two communities, namely, a monoid whose underlying set of elements form a complete lattice.
Residuation theory provided an elegant way to define a weak inverse operator of tensor ⌦with
the purpose to determine the minimal information that enables the firing of actions in the LTS,
thus distilling a suitable notion of labelled transition.

The operational semantics chosen in [6] favoured a global view of variables, namely, the
agent 9

x

A, roughly corresponding to an existential quantification over the variable x of the
agent A, would evolve to the agent A[y/

x

], for y a fresh variable (with respect to the agent A

and the store it is valued in). In this work we consider instead local variables, where the hiding
operator carries some information on the variables it abstracts. More precisely, according to [3]
we consider an extended operator 9�

x

, for � the local store. Thanks again to the residuation
operator, the rule for the extended hidings can be defined as Hide in Tab. 1. The intuition is
that variable x may be local to a component 9

x

�0 of the store �, yet visible at a global level: we
must then evaluate A in the store when the local x is hidden, yet the possible duplications are
removed (e.g., 9

x

�0 may already occur in the global store �). The final store intuitively contains
in �1 the original �0 increased by what has been added by the step.

In the labelled version of the rule (L-Hide in Tab. 1) we rename the global x with a fresh
variable z, instead of hiding x in the global store, as we do in the corresponding unlabelled rule.
We accomplish this in order to keep track of the global x in ↵: finally, in the result we restore
the occurrences of z back to x.

The work is rounded up by a preliminary correspondence results between fair computations
and bisimulation for soft CCP with local variables.

References

[1] Andrés Aristizábal, Filippo Bonchi, Catuscia Palamidessi, Luis Fernando Pino & Frank D. Valencia
(2011): Deriving labels and bisimilarity for concurrent constraint programming. In Martin Hofmann,
editor: FOSSACS 2011, LNCS 6604, Springer, pp. 138–152.

[2] Stefano Bistarelli, Ugo Montanari & Francesca Rossi (2006): Soft concurrent constraint programming.
ACM ToCL 7(3), pp. 563–589.

[3] Frank S. de Boer, Maurizio Gabbrielli, Elena Marchiori & Catuscia Palamidessi (1997): Proving

concurrent constraint programs correct. ACM ToPLaS 19(5), pp. 685–725.

63

F. Gadducci & F. Santini 3

[4] Filippo Bonchi, Fabio Gadducci & Barbara König (2009): Synthesising CCS bisimulation using graph

rewriting. I& C 207(1), pp. 14–40.
[5] Filippo Bonchi, Fabio Gadducci & Giacoma Valentina Monreale (2014): A general theory of barbs,

contexts, and labels. ACM ToCL 15(4), pp. 35:1–35:27.
[6] Fabio Gadducci, Luis Pino, Francesco Santini & Frank Valencia (2015): A labelled semantics for soft

CCP. In T. Holvoet & M. Viroli, editors: COORDINATION, LNCS 9037, pp. 133–149.
[7] James J. Leifer & Robin Milner (2000): Deriving bisimulation congruences for reactive systems. In Catuscia

Palamidessi, editor: CONCUR 2000, LNCS, pp. 243–258.
[8] Robin Milner (2006): Pure bigraphs: Structure and dynamics. I&C 204(1), pp. 60–122.
[9] Vijay A. Saraswat, Martin C. Rinard & Prakash Panangaden (1991): Semantic foundations of concurrent

constraint programming. In David S. Wise, editor: POPL 1991, ACM Press, pp. 333–352.

64

