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Abstract
In this paper, we present AbU a new ECA-inspired calculus with attribute-based communication,
an interaction model recently introduced for coordinating large numbers of nodes. Attribute-based
communication is similar to broadcast, but the actual receivers are selected “on the fly” by means of
predicates over nodes’ attributes.

After having defined syntax and formal semantics of AbU, with some examples, we give sufficient
conditions on AbU systems to guarantee termination of internal steps. Then we show how to encode
into AbU components written in AbC, the archetypal calculus with attribute-based communication,
and we prove the correctness of such encoding.
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1 Introduction

Event Condition Action (ECA) languages are an intuitive and powerful paradigm for pro-
gramming reactive systems. The fundamental construct of ECA languages are rules of the
form “on Event if Condition do Action” which means: when Event occurs, if Condition
is verified then execute Action. ECA systems receive inputs (as events) from the external
environment and react by performing internal actions, updating the node’s local memory,
or external actions, which influence the environment itself. Due to their reactive nature,
ECA languages are well-suited for programming smart systems, in particular in IoT sce-
narios [17, 11]. Indeed, this paradigm can be found in various commercial frameworks like
IFTTT, Samsung SmartThings, Microsoft Power Automate, Zapier, etc.

In most cases, the rules are stored and executed by a central computing node, possibly
in the cloud: the components of the adaptive system do not communicate directly, and
the coordination is demanded to the central node/cloud service. Although simple, such a
centralized architecture does not scale well to large systems, and the central node/cloud
service is a Single Point Of Failure, hindering availability. Thus, in these situations we may
prefer to move computation closer to the edge of the network, akin fog computing: the ECA
rules should be stored and executed directly in the nodes, in a truly distributed setting. This
approach reduces data transfers between the edge and the center of the network—in fact,
there can be no center at all, thus increasing scalability and resilience—but, on the other
hand, it requires a distributed coordination and communication of these components.

In order to model these issues, in this paper we introduce AbU (for “Attribute-based Up-
dates”), a new calculus aiming at merging the simplicity of ECA programming with distributed
coordination mechanisms in the spirit of attribute-based communication. Attribute-based
communication is a time-coupled, space-uncoupled interaction model recently introduced
for coordinating large numbers of components and subsuming several interaction paradigms
used in “smart systems”, such as channels, agents, pub/sub, broadcast and multicast [5, 2, 4].
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The key aspect of attribute-based communication is that the actual receivers are selected “on
the fly” by means of predicates. Using a syntax similar to AbC [5] (the archetypal calculus
for attribute-based communication), ⟨e @ Π⟩.P means “send (the value of) e to all nodes
satisfying Π, then continue as P ”; dually, (x |Π).P means “when receiving a message x such
that Π holds, continue as P”.

Integrating attribute-based communication in the ECA paradigm is not obvious. One
coud try to add some primitives similar to AbC’s, but this would yield a disharmonious
patchwork of different paradigms, i.e., message-passing vs. memory-based events. Instead, in
AbU we choose a different path: communications are reduced to events of the same kind
ECA programs already deal with, that is, memory updates. For instance, a AbU rule like
the following:

accessT @(role = logger) : log ← log + accessT

means “when (my local) variable accessT changes, add its value to the variable log of
all nodes whose variable role has value logger”. Clearly, the update of log may trigger
other rules on these (remote) nodes, and so on. We call this mechanism attribute-based
memory updates, since it can be seen as the memory-based counterpart of attribute-based
(message-passing) communication.

This smooth integration of communication within the ECA paradigm makes easier to
extend to the distributed setting known results and techniques. As an example, we will
provide a simple syntactic check to guarantee stabilization, i.e., that a chain of rule executions
triggered by an external event will eventually terminate. Furthermore, we will discuss how
implementations can leverage well-known optimization strategies for ECA rules, like the
RETE algorithm [12].

Synopsis.

After a summary of related work in Section 2, in Section 3 we introduce AbU, the new ECA-
inspired calculus with attribute-based memory updates. After its syntax and operational
semantics, we give a simple termination criterion based on a syntactic condition. Then, in
Section 4 we show how to encode AbC components in AbU, providing encoding correctness
and examples. In Section 5 we discuss some issues concerning the distributed implementation
of AbU. Conclusions and directions for future work are in Section 6. Full proofs of the results
can be found in the companion technical report [30].

2 Related Work

To the best of our knowledge, no work in literature aims at merging the two programming
paradigms taken into consideration in the present paper. An approach close in spirit to ours
is that based on associative memories, that is tuple spaces, as in the Linda language [18]
and the KLAIM calculus [20]. In fact, also tuple spaces have events (insertion or deletion
of tuples) that can be notified to nodes. Furthermore, tuple spaces can be inspected via
pattern matching, which can be seen as a restricted form of attribute-based lookup. Despite
these analogies, tuple spaces and AbU differ on many aspects: the latter is based on ECA
rules, attribute-based communication is implemented by means of remote memory updates
(and hence transparent to the nodes involved in the distributed system) and the logic for
predicating over attributes is more expressive than simple pattern matching.

Concerning ECA programming, [19, 14] introduce IRON, a language based on ECA rules
for the IoT domain. Following other work about ECA languages, [31, 32] present verification
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mechanisms to check properties on IRON programs, such as termination, confluence, redun-
dant or contradicting rules. Other work proposes approaches to verify ECA programs by
using Petri Nets [27] and BDD [13]. In [16, 17], the authors present a tool-supported method
for verifying and controlling the correct interactions of ECA rules. All these works do not
deal with distributed systems, hence communication is not taken into account.

AbC has been introduced and studied in [5, 4, 2] as a core calculus for SCEL [22], a
language à la KLAIM with collective communication primitives. Focusing on the attribute-
based communication model, AbC is well-suited to model Collective Adaptive Systems
(CAS) [10] from a process standpoint (as opposed to Multi-Agents Systems (MAS) that
follow a logical approach [33]; we refer to [4] for more details). Various extensions of AbC
has been proposed [3, 6], as well as correct implementations in Erlang [21] and Golang [1, 24].
AbC, and its parent languages, adopt a message-passing communication mechanism and
a sequential, process-like, execution flow, which are orthogonal with respect to the ECA
rules setting. Since the goal of the present work is to extend the ECA programming style
with attributed-based communication mechanisms, we will focus on the most fundamental
primitives of AbC, omitting features not strictly necessary.

Some work combining message-passing primitives and shared-memory mechanisms have
been recently proposed [8, 9]. In particular, the m&m model of [8] allows processes to both
pass messages and share memory. This approach is increasingly used in practice (e.g., in data
centers), as it seems to have great impact on the performance of distributed systems. An
example application is given by Remote Direct Memory Access (RDMA) [9], that provides
processes primitives both for send/receive communication, and for direct remote memory
access. This mixed approach has been recently applied also in the MAS context [7], where
the local behavior of agents is based on shared variables and the global behavior is based on
message-passing. These results could be very helpful for the implementation of AbU, since a
message-passing with shared-memory approach perfectly fits the attribute-based memory
updates setting.

3 The AbU Calculus

We present here AbU, a calculus following the Event Condition Action (ECA) paradigm,
augmented with attribute-based communication. This solution embodies the programming
simplicity prerogative of ECA rules, but it is expressive enough to model complex coordination
scenarios, typical of distributed systems.

3.1 Syntax
A AbU system S is either a node, of the form R⟨Σ, Θ⟩, or a parallel composition S1 ∥ S2 of
systems. A state Σ ∈ X −→ V, is a map from resource (names) in X to values in V, while
an execution pool Θ ⊆

⋃
n∈N Un is a set of updates. An update upd is a finite list of pairs

(x, v) ∈ U, meaning that the resource x will take the value v after the execution of the
update. Each node is equipped with a non-empty finite list R of ECA rules, generated by
the following grammar.

rule ::= evt ⋗ act, task cnd ::= φ | @φ

evt ::= x | evt evt φ ::= ⊥ | ⊤ | ¬φ | φ ∧ φ | φ ∨ φ | ε ▷◁ ε

act ::= ϵ | x← ε act | x← ε act ε ::= v | x | x | ε ⊗ ε

task ::= cnd : act x ∈ X v ∈ V
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A ECA rule evt ⋗ act, task is guarded by an event evt, which is a non-empty finite list
of resources. When one of these resources is modified, the rule is fired: the default action
act and the task are evaluated. Evaluation does not change the resource states immediately;
instead, it yields update operations which are added to the execution pools, and applied
later on.

An action is a finite (possibly empty) list of assignments of value expressions to local x or
remote x resources. The default action can access and update only local resources. On the
other hand, a task consists in a condition cnd and an action act. A condition is a boolean
expression, optionally prefixed with the modifier @. If @ is not present, the task is local:
all resources in the condition and in the action refer to the local node (thus variables of
the form x cannot occur). So, the condition is evaluated locally; if it holds, the action is
evaluated. Otherwise, if @ is present, then the task is remote: the task @φ : act reads as
“for all external nodes where φ holds, do act”. On every node where the condition holds, the
action is evaluated yielding an update to be added to that node’s pool. So, in remote tasks
each assignment in act is on remote resources only, but still they can use values from the
local node. As an example, the task @⊤ : x← x + x means “add the value of this node’s x

to the x of every other node".
In the syntax for boolean expressions φ and value expressions ε we let implicit comparison

operators, e.g., ▷◁∈ {<,≤, >,≥, =, ̸=}, and binary operations, e.g., ⊗∈ {+,−, ∗, /}. In
expressions we can have both local and remote instance of resources, although the latter can
occur only inside remote tasks.

When we have a rule of the form evt ⋗ ϵ, task, namely when we have rules with empty
default action, we write more concisely evt task in place of evt ⋗ ϵ, task.

3.2 Semantics
Given a list R of rules and a set X of resources that have been modified, we define the
set of active rules as Active(R, X) ≜ {evt ⋗ act, task ∈ R | evt ∩X ≠ ∅}, namely the rules
in R that listen on resources in X and, hence, that may be fired. Given an action act, its
evaluation JactK in the state Σ returns an update. Formally: Jx1 ← ε1 . . . xn ← εnKΣ ≜
(x1, Jε1KΣ) . . . (xn, JεnKΣ). The evaluation semantics for value expressions ε is standard. As
we will see in a moment, the semantic function J·K is applied only to local actions, that do
not contain instances of external resources x.

The default updates are the updates originated from the default actions of active rules in
R, namely:

DefUpds(R, X, Σ) ≜ {JactKΣ | ∃evt ⋗ act, task ∈ Active(R, X)}

The local updates are the updates originated from the tasks of the active rules in R that act
only locally (@ is not present in the tasks’ condition) and that satisfy the task’s condition,
namely:

LocalUpds(R, X, Σ) ≜ {Jact2KΣ | ∃evt ⋗ act1, φ : act2 ∈ Active(R, X) . Σ |= φ}

The satisfiability relation is defined as: Σ |= φ ≜ JφKΣ = tt (the evaluation semantics for
boolean expressions φ is standard as well).

When we have a task containing the modifier @, an external node is needed to evaluate
the task’s condition. In our semantics, when a node needs to evaluate a task involving
external nodes, it partially evaluates the task (with its own state) and then it sends the
partially evaluated task to all other nodes. The latter, receive the task and complete the
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evaluation, potentially adding updates to their pool. In particular, the partial evaluation
of tasks works as follows. With {|task|}Σ we denote the task obtained from task with each
occurrence of x in the task’s condition and the right-hand sides of the assignments in
task’s action replaced with the value Σ(x). After that, each instance of x in the task’s
action is replaced with x and each instance of x in the task’s action is replaced with
x (this happens, in case, only on the left-hand sides of the assignments of the task’s
action). For instance, {|@(x ≤ x) : y ← x + y|}[x 7→ 1 y 7→ 0] = @(1 ≤ x) : y ← 1 + y.
Note that, once the task is partially evaluated and sent to other nodes, then it becomes
“syntactically local” for the receiving nodes1. Finally, we define the external tasks as
ExtTasks(R, X, Σ) ≜ {|task1|}Σ . . . {|taskn|}Σ such that for each i ∈ [1..n] there exists a rule
evt ⋗ act, taski ∈ Active(R, X) such that taski = @φ : act, namely the tasks of active rules in
R whose condition contains @ (i.e., tasks that require an external node to be evaluated).

The (small-step) semantics of a AbU system is modeled as a labeled transition system
S1

α−_ S2 whose labels are given by α ::= T | ▷ T | ▶ T where T is a finite list of tasks.
A transition can modify the state and the execution pool of the nodes. The semantics is
distributed, in the sense that each node’s semantics does not have a global knowledge about
the system. The rules are in Fig. 1. A rule (Exec) executes an update picked from the pool;
while a rule (Input) models an external modification of some resources. The execution of
an update, or the change of resources, may trigger some rules of the nodes. Hence, after
updating a node’s state, the semantics of a node launches a discovery phase, with the goal of
finding new updates to add to the local pool (or some pools of remote nodes), given by the
activation of some rules. The discovery phase is composed by two parts, the local and the
external one. A node R⟨Σ, Θ⟩ performs a local discovery by means of the functions DefUpds
and LocalUpds, that add to the local pool Θ all updates originated by the activation of some
rules in R. Then, by means of the function ExtTasks, the node computes a list of tasks that
may update external nodes and sends it to all nodes in the system. This is modeled with
the labels ▷T , produced by the rule (Exec), and ▶T , produced by the rule (Input). On the
other side, when a node receives a list of tasks (executing the rule (Disc) with a label T ) it
evaluates them and adds to its pool the actions generated by the tasks whose condition is
satisfied.

Finally, the rule (Step) completes (on all nodes in the system) a discovery phase launched
by a given node. Note that, not necessarily all nodes have to modify their pool (indeed, a
task’s condition may not hold in an external node). At the same time, the rule synchronizes
the whole discovery phase, originated by a change in the state of a node in the system. When
a node executes an action originating only local updates, the rule (Step) is applied with
S′

2 = S2, producing the label ▷ε or the label ▶ε (i.e., with an empty tasks’ list). The parallel
composition of systems ∥ is associative and commutative.

Note that, in order to start the computation for a system of nodes, an input (i.e., an
external modification of the environment) is needed since, at the beginning, all pools of all
nodes in the system are empty.

3.2.0.1 Wave semantics.

A AbU system S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩ is stable when no more execution steps
can be performed, namely when all execution pools Θi, for i ∈ [1..n], are empty. We
will use R⟨Σ⟩ as a shorthand for R⟨Σ,∅⟩. So, a system is stable when it is of the form

1 This means that we can evaluate the task’s action with the semantic function J·K.
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(Exec)

upd ∈ Θ upd = (x1, v1) . . . (xk, vk) Σ′ = Σ[v1/x1 . . . vk/xk]
Θ′′ = Θ \ {upd} X = {xi | i ∈ [1..k] ∧ Σ(xi) ̸= Σ′(x)}

Θ′ = Θ′′ ∪ DefUpds(R, X, Σ) ∪ LocalUpds(R, X, Σ) T = ExtTasks(R, X, Σ)
R⟨Σ, Θ⟩ ▷T−−_ R⟨Σ′, Θ′⟩

(Input)

v1, . . . , vk ∈ V Σ′ = Σ[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
Θ′ = Θ ∪ DefUpds(R, X, Σ) ∪ LocalUpds(R, X, Σ) T = ExtTasks(R, X, Σ)

R⟨Σ, Θ⟩ ▶T−−_ R⟨Σ′, Θ′⟩

(Disc)
Θ′′ = {JactKΣ | ∃i ∈ [1..n] . taski = @φ : act ∧ Σ |= φ} Θ′ = Θ ∪Θ′′

R⟨Σ, Θ⟩ task1...taskn−−−−−−−_ R⟨Σ, Θ′⟩

(Step)
S1

α−_ S′
1 S2

T−_ S′
2

S1 ∥ S2
α−_ S′

1 ∥ S′
2

α∈{▷T,▶T }

Figure 1 AbU semantics for nodes and systems.

R1⟨Σ1⟩ ∥ . . . ∥ Rn⟨Σn⟩. In the case of a stable system, only the rule (Input) can be applied,
i.e., an external environment change is needed to (re)start the computation.

We can define a big-step semantics S⇝ S′ between stable systems, dubbed wave semantics,
in terms of the small-step semantics. Let −_∗ be the transitive closure of −_, without
occurrences of labels of the form ▶ T , namely −_∗ denotes a finite sequence of internal
execution steps (with the corresponding discovery phases), without interleaving input steps.
The wave semantics for a system S is:

(Wave)
S = R1⟨Σ1⟩ ∥ . . . ∥ Rn⟨Σn⟩ S ▶T−−_ S′′ −_∗ S′ S′ = R1⟨Σ′

1⟩ ∥ . . . ∥ Rn⟨Σ′
n⟩

S⇝ S′

The idea is that a (stable) system reacts to an external stimulus by executing a series of
tasks (a “wave”), until it becomes stable again, waiting for the next stimulus. Note that, in
the wave semantics inputs do not interleave with internal steps: this leaves the system the
time to reach stability before the next input. If we allow arbitrary input steps during the
computation, possibly a system may never reach stability since the execution pools could be
never emptied. This assumption has a practical interpretation: in the IoT context, usually,
external changes (in sensors) take much more time than internal computation steps [15].

3.3 A Working Example
Let us consider the scenario sketched in the Introduction, where an “access” node aims
at sending its local access time to all “logger” nodes in the system. In other words, this
node is activated when accessT changes, namely when a new user performs access. Suppose
now that the node, together with the time-stamp, aims at sending the IP address of the
user and the name of the accessed resource. On the other side, the logger nodes record the
access time, the IP address and the resource’s name. Furthermore, suppose that these nodes
contain a black-list of IP addresses. This list can be updated at run-time, by external entities
communicating with logger nodes, so it may be the case that different logger nodes have
different black-lists. A logger node that notices an access from a black-listed IP is in charge
of notifying an intrusion detection system (IDS).

The system is formalized in AbU as follows. We suppose to have two access nodes and
two logger nodes. We also suppose that log is a structured type, i.e., a list of records of the
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form |IP ; accessT ; res|. An append to the list log is given by append log |IP ; accessT ; res|,
with |IP ; accessT ; res|.IP we denote the access of the field IP , and tail[log] returns the last
record inserted in the list log.

S1 ≜ Ra⟨Σ1,∅⟩ = Ra⟨[IP 7→ε accessT 7→00:00:00 res 7→camera],∅⟩
S2 ≜ Ra⟨Σ2,∅⟩ = Ra⟨[IP 7→ε accessT 7→00:00:00 res 7→lock],∅⟩
S3 ≜ Rl⟨Σ3,∅⟩ = Rl⟨[role 7→logger log 7→ε Blist 7→ε IDS 7→ε],∅⟩
S4 ≜ Rl⟨Σ4,∅⟩ = Rl⟨[role 7→logger log 7→ε Blist 7→167.123.23.2; IDS 7→ε],∅⟩
Ra ≜ accessT @(role = logger) : log ← append log |IP ; accessT ; res|
Rl ≜ log (tail[log].IP ∈ Blist) : IDS ← tail[log]

At the beginning, the AbU system S1 ∥ S2 ∥ S3 ∥ S4 is stable, since all pools are empty. At
some point, an access is made on the resource camera, so the rule (Input) is applied on S1,
namely Ra⟨Σ1,∅⟩ ▶T−−_ Ra⟨Σ′

1,∅⟩, where Σ′
1 = [accessT 7→ 15 : 07 : 00 res 7→ camera IP 7→

167.123.23.2] and

T = @(role = logger) : log ← append log |167.123.23.2; 15:07:00; camera|

Now, a discovery phase is performed on all other nodes. In particular, we have that
Ra⟨Σ2,∅⟩ T−_ Ra⟨Σ2,∅⟩, Rl⟨Σ3,∅⟩ T−_ Rl⟨Σ3, Θ⟩, and Rl⟨Σ4,∅⟩ T−_ Rl⟨Σ4, Θ⟩. Here, the
pool Θ is the set {(log, |167.123.23.2; 15 :07 :00; camera|)}. Now, let S′

1 = Ra⟨Σ′
1,∅⟩, S′

3 =
Rl⟨Σ′

3, Θ⟩ and S′
4 = Rl⟨Σ′

4, Θ⟩. The derivation tree for the resulting system S′
1 ∥ S2 ∥ S′

3 ∥ S′
4

is depicted in Fig. 2[top]. For space reasons, we abbreviate rules’ names and we omit the
premises of leaf rules.

Now, the third and the fourth nodes can apply an execution step, since their pools are
not empty. Suppose the third node is chosen, namely we have Rl⟨Σ3, Θ⟩ ▷ε−−_ Rl⟨Σ′

3,∅⟩,
by applying the rule (Exec), and Σ′

3 = [role 7→ logger log 7→ |167.123.23.2; 15 : 07 :
00; camera| Blist 7→ ∅ IDS 7→ ε]. Note that, in this case, no rule is triggered by the
executed update. Since there is nothing to discover, all the other nodes do not have to
update their pool and the derivation tree for the resulting system S′

1 ∥ S2 ∥ S′′
3 ∥ S′

4,
where S′′

3 = Rl⟨Σ′
3,∅⟩ is given in Fig. 2[bottom]. Finally, the fourth node can exe-

cute, namely we have that Rl⟨Σ4, Θ⟩ ▷ε−−_ Rl⟨Σ′
4, Θ′⟩, by applying the rule (Exec). Here,

Σ′
4 = [role 7→logger log 7→|167.123.23.2; 15 :07 :00; camera| Blist 7→167.123.23.2; IDS 7→ε]

and Θ′ = {(IDS, |167.123.23.2; 15 :07 :00; camera|)}. In this case, the execution of the update
triggers a rule of the node but the rule is local so, also in this case, the discovery phase does
not have effect. The derivation tree for this step is analogous to the derivation tree for the
previous one. Finally, with a further execution on the fourth node, we obtain the system
S′

1 ∥ S2 ∥ S′′
3 ∥ S′′

4 , where S′′
4 = Rl⟨Σ′′

4 ,∅⟩ and Σ′′
4 = [role 7→logger log 7→ |167.123.23.2; 15 :

07 : 00; camera| Blist 7→ 167.123.23.2; IDS 7→ |167.123.23.2; 15 : 07 : 00; camera|]. Since all
pools are empty, the resulting system is stable. This means that we can perform a wave
semantics step:

(Wave)

S1 ∥ S2 ∥ S3 ∥ S4
▶T−−_ S′

1 ∥ S2 ∥ S′
3 ∥ S′

4

S′
1 ∥ S2 ∥ S′

3 ∥ S′
4

▷ε−−_ S′
1 ∥ S2 ∥ S′′

3 ∥ S′
4

▷ε−−_ . . .
▷ε−−_ S′

1 ∥ S2 ∥ S′′
3 ∥ S′′

4

S1 ∥ S2 ∥ S3 ∥ S4 ⇝ S′
1 ∥ S2 ∥ S′′

3 ∥ S′′
4

3.4 Termination Guarantee
The wave semantics (and, hence, a AbU system) may exhibit internal divergence: once an
input step starts the computation, the subsequent execution steps may not reach a stable
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. . .(I)
Ra⟨Σ1,∅⟩ ▶T−−_ Ra⟨Σ′

1,∅⟩
. . .(D)

Ra⟨Σ2,∅⟩ T−_ Ra⟨Σ2,∅⟩
(S)

S1 ∥ S2
▶T−−_ S′

1 ∥ S2

. . .(D)
Rl⟨Σ3,∅⟩ T−_ Rl⟨Σ3, Θ⟩

(S)
S1 ∥ S2 ∥ S3

▶T−−_ S′
1 ∥ S2 ∥ S′

3

. . .(D)
Rl⟨Σ4,∅⟩ T−_ Rl⟨Σ4, Θ⟩

(S)
S1 ∥ S2 ∥ S3 ∥ S4

▶T−−_ S′
1 ∥ S2 ∥ S′

3 ∥ S′
4

. . .(E)
Rl⟨Σ3, Θ⟩ ▷ε−−_ Rl⟨Σ′

3,∅⟩
. . .(D)

Ra⟨Σ′
1,∅⟩ ε−_ Ra⟨Σ′

1,∅⟩
(S)

S′
3 ∥ S′

1
▷ε−−_ S′′

3 ∥ S′
1

. . .(D)
Ra⟨Σ2,∅⟩ ε−_ Ra⟨Σ2,∅⟩

(S)
S′

3 ∥ S′
1 ∥ S2

▷ε−−_ S′′
3 ∥ S′

1 ∥ S2

. . .(D)
Rl⟨Σ4, Θ⟩ ε−_ Rl⟨Σ4, Θ⟩

(S)
S′

3 ∥ S′
1 ∥ S2 ∥ S′

4
▷ε−−_ S′′

3 ∥ S′
1 ∥ S2 ∥ S′

4

Figure 2 Derivation trees for AbU semantic steps: (Input) [top] and (Exec) [bottom].

system, even if intermediate inputs are not performed.
Consider the case of the book “The Making of a fly”, that reached the stellar selling price

of $23,698,655.93 on Amazon, in 20012. Two Amazon retailers, profnath and bordeebook,
used Amazon’s automatic pricing primitives to set the price of their book’s copy, depending
the competitor’s book price. The strategy of profnath was to automatically set the price
0.99 times the bordeebook’s price; conversely, the strategy of bordeebook was to set the price
1.27 times the profnath’s price. Each retailer was not aware of the competitor’s strategy.
This scenario can be modeled with the following ECA rules:

when bordeebook-price changes, set profnath-price to bordeebook-price ∗ 0.99
when profnath-price changes, set bordeebook-price to profnath-price ∗ 1.27

It is easy to see that these rules generate a loop, leading to an uncontrolled raise of the book’s
price (as it happened). In order to prevent these situations, we define a simple syntactic
condition on the rules that guarantees (internal) termination. In other words, each system
satisfying the condition eventually becomes stable, after an initial input and without further
interleaving inputs. This condition can be checked before the rules are deployed in the
system.

The output resources of a AbU rule, namely the resources involved in the actions performed
by the rule, are given by the the resources assigned in the default action and in the rule’s
task. The output resources of an action act are the set Out(act) ≜ {x | ∃i ∈ N . act[i] =
x← ε ∨ act[i] = x← ε}. So, the output resources of a rule are Out(evt ⋗ act1, cnd : act2) ≜
Out(act1) ∪ Out(act2).

The input resources of a AbU rule are the resources that the rule listen on, namely the
set In(evt ⋗ act, task) ≜ {x | ∃i ∈ N . evt[i] = x}. Given a list R of AbU rules, its output
resources Out(R) are the union of the output resources of all rules in the list. Analogously,
its input resources In(R) are the union of the input resources of all rules in the list.

▶ Definition 1 (ECA dependency graph). Given a AbU system S such that S = R1⟨Σ1, Θ1⟩ ∥
. . . ∥ Rn⟨Σn, Θn⟩, the ECA dependency graph of S is a directed graph (N, E) where the
nodes N and the edges E are:

N ≜
⋃

i∈[1..n] In(Ri) ∪ Out(Ri) E ≜

{
(x1, x2)

∣∣∣∣ ∃i ∈ [1..n]∃j ∈ [1..k] . Ri = rule1 . . . rulek

∧x1 ∈ In(rulej) ∧ x2 ∈ Out(rulej)

}

2 https://www.michaeleisen.org/blog/?p=358.

https://www.michaeleisen.org/blog/?p=358
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The sufficient syntactic condition for the termination of the wave semantics (i.e., stabi-
lization) consists in the acyclicity of the ECA dependency graph.

▶ Proposition 2 (Termination of the wave semantics). Given a AbU system S, if the ECA
dependency graph of S is acyclic, then there exists a system S′ such that S⇝ S′.

Therefore, a naive termination enforcing mechanism consists in computing the transitive
closure E+ of E and to check if it contains reflexive pairs, i.e., elements of the form (x, x),
for a resource identifier x. If there are no reflexive elements then the graph is acyclic and the
condition is fulfilled.

4 Encoding Attribute-based Communication

To showcase the generality of our calculus, in this section we encode the archetypal calculus
AbC [5] in AbU. Our aim is not to prove that AbU subsumes AbC: the two calculi adopt
different programming paradigms, with different peculiarities, that fit different application
scenarios. Our goal here is to show that we can model within the ECA programming style
the attribute-based communication.

4.1 The AbC Calculus
We focus on a minimal version of AbC [5], for which we define an operational semantics, on
the line of [4]. As already pointed out, we do not aim for a full-fledged version of AbC, since
the aim of this section is to encode in AbU the essence of the attribute-based communication,
comprehensively expressed by the core version of AbC that we will present in the following
paragraphs.

A AbC component C may be a process paired with an attribute environment, written
Γ : P , or the parallel composition of two components, written C1 ∥ C2. An attribute
environment Γ is a map from attribute identifiers a ∈ A to values v ∈ V . Our syntax of AbC
processes is as follows.

P ::= 0 | (x |Π).P | ⟨e @ Π⟩.P | [a := e]P | [Π]P | Pa + Pb | K
Π ::= ff | tt | Π1 ∨Π2 | Π1 ∧Π2 | ¬Π | e ▷◁ e with ▷◁ ∈ {<,≤, >,≥, =, ̸=}
e ::= v | a | x | this.a | e⊗ e with ⊗ ∈ {+,−, ∗, /}

In particular, the input (x |Π) receives a message from components that satisfy the predicate
Π, saving the message in the variable x. The output ⟨e @ Π⟩ sends (the evaluation of) the
expression e to all components that satisfy the predicate Π. The awareness process [Π]P
waits until Π is satisfied and then continues the execution as P . The other constructors are
as in [5] (the inactive process 0, non-deterministic choice between Pa + Pb and process calls
K). Predicates Π and expressions e are standard. The reader can refer to [5] for more details.

We now briefly explain the semantics for AbC. JeK(Γ) evaluates an expression e in
the environment Γ and yields a value, while JΠK(Γ) evaluates a predicate Π in Γ and
yields tt or ff. Their formal definition is straightforward, the only interesting cases are:
JaK(Γ) = Jthis.aK(Γ) = Γ(a). When JΠK(Γ) is tt we say that Γ satisfies Π, written Γ |= Π.
We assume that processes do not have free variables, i.e., x is always under the scope of an
input (x |Π). Finally, in {|Π|}(Γ) we substitute expressions of the form this.a with Γ(a). The
semantics for processes (Fig. 3[top]) and for components (Fig. 3[bottom]) is given by a labeled
transition system, where a process label δ is of the form Π⟨v⟩ (output) or Π(v) (input) and a
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(Brd)
{|Π′|}(Γ) = Π JeK(Γ) = v

Γ : ⟨e @ Π′⟩.P Π⟨v⟩−−−→ Γ : P

(Aware)
Γ |= Π Γ : P

δ−→ Γ′ : P ′

Γ : [Π]P δ−→ Γ′ : P ′

(Rcv)
Γ |= Π Γ |= Π′[v/x]

Γ : (x |Π′).P Π(v)−−−→ Γ : P [v/x]
(Sum)

Γ : Pa
δ−→ Γ′ : P ′

1

Γ : Pa + Pb
δ−→ Γ′ : P ′

1

(Upd)
JeK(Γ) = v Γ[v/a] : P

δ−→ Γ[v/a]′ : P ′

Γ : [a := e]P δ−→ Γ[v/a]′ : P ′
(Rec)

K ≜ P Γ : P
δ−→ Γ′ : P ′

Γ : K δ−→ Γ′ : P ′

(Comp)
Γ : P

δ−→ Γ′ : P ′

Γ : P
δ−_ Γ′ : P ′

(Sync)
C1

Π(v)−−−_ C ′
1 C2

Π(v)−−−_ C ′
2

C1 ∥ C2
Π(v)−−−_ C ′

1 ∥ C ′
2

(Comm)
C1

Π⟨v⟩−−−_ C ′
1 C2

Π(v)−−−_ C ′
2

C1 ∥ C2
Π⟨v⟩−−−_ C ′

1 ∥ C ′
2

(Int)
C1

Π⟨v⟩−−−_ C ′
1 C2

Π(v)−−−_

C1 ∥ C2
τ−_ C ′

1 ∥ C2

Figure 3 AbC semantics for processes [top] and components [bottom].

component label λ can be either a process label δ or a silent action τ (i.e., a communication
to a false predicate). Transitions rules in Fig. 3 are self-explanatory (symmetric rules are
omitted). The parallel composition of components ∥ is associative and commutative. The

inactive process semantics is modeled as a communication on false, i.e., Γ : 0
ff⟨0⟩−−−→ Γ : 0.

Note that, if the rule (Comm) is applicable then Π cannot be false, since the rule (Rcv)
cannot be applied with false predicates. When Π is false, (Int) is applied, representing an
internal execution step of C1. This rule applies also when C2 is not ready (or it does not
want) to communicate, allowing C1 to progress.

4.2 Encoding AbC in AbU
Given a AbC component Γ1 : P1 ∥ . . . ∥ Γn : Pn, we define a AbU system R1⟨Σ1⟩ ∥ . . . ∥
Rn⟨Σn⟩ composed by n nodes, where the state Σi of the ith node is given by the ith attribute
environment Γi (with some modifications). All nodes’ pools are initially empty. In order
to simulate process communication, we add to each node a special resource msg. If a node
wants to communicate a message, it has to update the msg resource of all the selected
communication partners. The execution of each AbC component is inherently sequential
while AbU nodes follow an event-driven architecture. In order to simulate AbC’s causality,
we associate each generated AbU rule with a special resource, a rule flag, whose purpose
is to enable and disable the rule. The sequential execution flow of an AbC component is
reconstructed modifying the active flag of the rules: this simulates a “token” that rules have
to hold in order to be executed. Formally, the state of the ith nodes is augmented as follows:

Σi = Γi ∪ {(msg, 0)} ∪
⋃

j∈[1..n]R
j(Pj)

A rule is generated for each process instance present in the AbC component to be encoded.
To this end, each node is augmented with all rule flags, of all rules, given by the translation of
all processes of the AbC component. Rule flags are resource of the form Phri, with h ∈ [1..n]
and i ≥ 0, representing the ith rule generated from the component h. The function Rh, given
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a process of the component h, with h ∈ [1..n], computes the resources to add to the nodes3.
Rh returns ∅ for the inactive process and for process calls, i.e., Rh(0) ≜ Rh(K) ≜ ∅, and

nothing is added. For the other processes, it returns Rh(P ) ≜ {(Phr0, ff)} ∪ Rh(P, 0). The
flag Phr0 is the starting point of the computation, indeed it does not represent any actual
rule, and it is set to tt in order to start the computation. The function Rh(P, i), for i ≥ 0, is
defined inductively on the structure of P . In the base cases P = 0 and P = K, it returns ∅
(i.e., nothing is added), otherwise it is defined as follows, where the auxiliary function Next
generates a fresh index for the next rule to add.

If the process is an input P = (x |Π).P ′, we add the flag for the current rule and another
resource for the variable x: {(x, 0), (Phrj , ff)} ∪ Rh(P ′, j), given Next(i) = j. If the process
is a non-deterministic choice, i.e., P = Pa + Pb, we add two flags, one for each branch,
that will originate two different rules: {(Phrj , ff), (Phrk, ff)} ∪ Rh(Pa, j) ∪Rh(Pb, k), given
Next(i) = j, Next(j) = k. In all other cases, i.e., P = [Π]P ′, P = [a := e]P ′ or P = ⟨e@Π⟩.P ′,
we add the flag for the current rule: {(Phrj , ff) ∪Rh(P ′, j), given Next(i) = j.

Concerning AbU rules, we adopt the following mechanism. The ith generated rule, of
the component h, listens on the rule flag Phri: when the latter becomes tt, the rule can
execute. Its execution disables Phri (it is set to ff) and enables the next rule, setting the flag
Phrj , with j = Next(i), to tt. In this way, the execution token can be exchanged between
rules. The function T h, given a process of the component h, with h ∈ [1..n], generates the
rules to add to the translation. It relies on Next, that outputs a fresh index for the next rule
to generate. We assume that Next in T h is consistent with Next in Rh, i.e., they have to
produce the same sequence of indexes given a specific process. The function T h(P, i), for
i ≥ 0, is defined inductively on the structure of P . In the base case P = 0, it returns ϵ (i.e.,
nothing is added), otherwise it is defined as follows.

If the process is a call to K, a new call rule is added. This rule enables the first flag (the
dummy rule r0) of the called process, defined by K.

P = K K ≜ Pk

Phri (Phri = ⊤) : Phri ← ⊥Pkr0 ← ⊤

If the process is an input x on the predicate Π, a new receive rule is added. The rule
checks the condition given by the translation of the predicate Π. Here, Repl replaces, in
a given AbU boolean expression, every instance of a specific service (x in this case) with
msg. As an example, the predicate Π = x < n is translated to Repl(T (Π), x) = msg < n.
When the condition is satisfied, the rule saves the value msg received from the sender (in the
resource x), ends the communication and enables the next rule.

P = (x |Π).P ′ Next(i) = j

Phri (Phri = ⊤ ∧ Repl(T (Π), x)) : x← msg Phri ← ⊥ Phrj ← ⊤ T h(P ′, j)

If the process is a non-deterministic choice between Pa and Pb, two new choice rules are
added. Both rules listen to the same flag, so the scheduler can choose non-deterministically
the one to execute. The action of the first choice rule enables the next rule given by the
translation of Pa, while the action of the second choice rule enables the next rule given by
the translation of Pb.

P = Pa + Pb Next(i) = j, Next(j) = k

Phri (Phri = ⊤) : Phri ← ⊥ Phrj ← ⊤ T h(Pa, j)
Phri (Phri = ⊤) : Phri ← ⊥ Phrk ← ⊤ T h(Pb, j)

3 Rh is parametric in h, since rules are binded to the component generating them.
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If the process is waiting on the predicate Π (awareness), a new awareness rule is added,
that listens on the resources contained in Π. The latter are retrieved by the function Vars
that inspects the predicate Π and returns a list of resource identifiers. In particular, variables
x are left untouched, while AbC expressions a and this.a are both translated to the resource
a. The condition in the rule’s task is the translation of Π. When it is satisfied, the next rule
is enabled.

P = [Π]P ′ Next(i) = j

Phri Vars(Π) (Phri = ⊤ ∧ T (Π)) : Phri ← ⊥ Phrj ← ⊤ T h(P ′, j)

If the process updates the attribute a with the expression e, an update rule is added,
assigning the translation of e to a and enabling the next rule.

P = [a := e]P ′ Next(i) = j

Phri (Phri = ⊤) : a← T (e) Phri ← ⊥ Phrj ← ⊤ T h(P ′, j)
If the process is an output of the expression e on the predicate Π, a new send rule is

added. The rule checks the condition given by the translation of the predicate Π. Note that,
in the AbC semantics, the predicate is partially evaluated before the send, namely expressions
of the form this.a are substituted with Γ(a). To simulate this mechanism in AbU we use
an auxiliary transformation Ext that takes a AbC predicate Π and returns its translation
T (Π) where each instance (in Π) of an attribute a not prefixed by this. is translated to a.
As an example, the predicate Π = this.n < n is translated to Ext(Π) = n < n. For each
external node satisfying the predicate Π, the rule writes the translation of e to the external
node resource msg (with msg ← T (e)). Outputs are non-blocking, so the rule has a default
code, executed without caring about the satisfaction of the condition. It disables the current
rule and enables the next one.

P = ⟨e @ Π⟩.P ′ Next(i) = j

Phri ⋗ Phri ← ⊥ Phrj ← ⊤, @(Phri = ⊤ ∧ Ext(Π)) : msg ← T (e) T h(P ′, j)
Finally, the translation of predicates T (Π) and expressions T (e) is recursively defined

on Π and e, respectively. Its definition is straightforward, the only interesting cases are:
T (this.a) ≜ T (a) ≜ a. To start the execution of the translated system, an (Input) is needed,
enabling all rule flags Phr0, of all nodes.

In Fig. 4 we graphically explain how an attribute-based communication is performed
in AbU, by means of attribute-based memory updates. The node node1 aims to send the
value v to nodes node2 and node3, since they satisfy φ1 = Ext(Π1). So, it updates with v

the resource msg on the remote nodes node2 and node3. On the other side, node2 and node3
check if some node aims to communicate and node1 is indeed selected. Since node1 satisfies
φ2 = Repl(T (Π2), x) and does not satisfy φ3 = Repl(T (Π3), x), only node2 accepts the value
v, saving it in the resource x, while node3 ignores the communication.

In the following, we denote with T (C) the AbU encoding of C, where node states are
defined as explained above, node pools are empty and nodes’ ECA rules are generated by T
(given the process of C).

4.2.0.1 Encoding example.

Given N agents, each associated with an integer in [1..N ], we wish to find one holding the
maximum value. This problem can be modeled in AbC by using one component type P with
two attributes: s, initially set to 1, indicating that the current component is the max; and n,
that stores the component’s value. Formally, the process P (with Max ≜ P ) is:

P = [s = 1] ( ⟨n @ n ≤ this.n⟩ . Max + (x | x ≥ this.n) . [s := 0]0 )
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SEND v to @φ1

node1
msg 7→ 0
x 7→ 0

node2
msg 7→ v
x 7→ 0

node3
msg 7→ v
x = 0

node4
msg 7→ 0
x 7→ 0

satisfy φ1
msg ← v

m
sg ←

v

ignored

RECV x from φ2
node2 checks φ2, and x← msg is executed

msg 7→ v x 7→ v

node1 selected, and φ2 satisfied

RECV x from φ3
node3 checks φ3, but nothing is executed

msg 7→ v x 7→ 0

node1 selected, but φ3 not satisfied

Figure 4 Communication: a receive phase (right) after a send phase (left).

P waits until s becomes 1 and then either: it sends its own value n to all other components
with smaller n; or it receives (on x) a value from another component with a greater n

and sets s to 0. Supposing N = 3, the problem is modeled in AbC with the component
Cmax = [s 7→ 1 n 7→ 1] : P ∥ [s 7→ 1 n 7→ 2] : P ∥ [s 7→ 1 n 7→ 3] : P . This AbC component
translates to AbU as follows.

R⟨[msg 7→0 n 7→1 x 7→0 s 7→0 P1r0 7→ff . . . P1r6 7→ff]⟩
R⟨[msg 7→0 n 7→2 x 7→0 s 7→0 P1r0 7→ff . . . P1r6 7→ff]⟩
R⟨[msg 7→0 n 7→3 x 7→0 s 7→0 P1r0 7→ff . . . P1r6 7→ff]⟩
R = P1r0 (P1r0 = ⊤ ∧ s = 1) : P1r0 ← ⊥ P1r1 ← ⊤ aware rule

P1r1 (P1r1 = ⊤) : P1r1 ← ⊥ P1r2 ← ⊤ choice1 rule
P1r1 (P1r1 = ⊤) : P1r1 ← ⊥ P1r3 ← ⊤ choice2 rule
P1r2 ⋗ P1r2 ← ⊥ P1r4 ← ⊤, @(P1r2 = ⊤ ∧ n ≤ n) : msg ← n send rule
P1r4 (P1r4 = ⊤) : P1r4 ← ⊥ P1r0 ← ⊤ call rule
P1r3 (P1r3 = ⊤ ∧msg ≥ n) : x← msg P1r3 ← ⊥ P1r5 ← ⊤ receive rule
P1r5 (P1r5 = ⊤) : s← 0 P1r5 ← ⊥ P1r6 ← ⊤ update rule

4.3 Correctness of the Encoding
Since a AbU node contains auxiliary resources, in addition to those corresponding to AbC
attributes, we have to establish a notion of compatibility between AbU node states and AbC
attribute environments. Given a AbU node state Σ and a AbC attribute environment Γ,
we say that Σ is compatible with Γ, written Σ ⪰ Γ, when for each (a, v) ∈ Γ there exists
(a, v) ∈ Σ (i.e., Γ ⊆ Σ). This basically means that Σ agrees, at least, on all attributes of
Γ. This notion can be extended to systems and components. Given a AbC component
C = Γ1 : P1 ∥ . . . ∥ Γn : Pn and a AbU system S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩, we say
that S is compatible with C, written S ⪰ C, when Σi ⪰ Γi, for each i ∈ [1..n].

Recall that, the AbU translation T (C) of C yields n (one for each process) initial rule
flags P1r0, . . . , Pnr0, initially set to ff. In order to start the computation of T (C), the latter
have to be initialized (i.e., set to tt). In this regards, we assume an initial input phase,
comprising n AbU (Input) steps, enabling all initial rule flags (without interleaving execution
steps). Let −▶∗ be the transitive closure of −_ without occurrences of labels of the form ▷T .
In other words, −▶∗ denotes a finite sequence of internal input steps (with the corresponding
discovery phases), without interleaving execution steps.

Now we are ready to state the correctness of the AbC encoding. The following Thm. 3 says
that if a AbC component performs some computation steps, producing a residual component
C ′, then the AbU translation of C, after an initial input phase, is able to perform an arbitrary
number of computation steps, yielding a residual system attribute compatible with C ′. This
basically means that T (C) is able to “simulate” each possible execution of C.
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AbU node

Device drivers Distribution

ECA Rules Engine

sensors/actuators other AbU nodesnetwork

Communication layerIoT interface

Attribute-based memory updatesDistributed discovery

Figure 5 High-level view of a AbU node implementation.

▶ Theorem 3 (AbC to AbU correctness). Consider a AbC component C and its corresponding
AbU encoding S = T (C). Then, for all C ′ such that C _∗ C ′ there exists S′ such that
S −▶∗_∗ S′ and S′ ⪰ C ′.

5 Towards a Distributed Implementation

In impementing AbU, we can basically follow two approaches. We can implement the calculus
from scratch, dealing with all the problems related to a distributed infrastructure; or we can
extend an existing distributed language with an abstraction layer to support ECA rules and
their event-driven behavior. The latter approach can be less efficient, but more suitable for
fast prototyping.

In any case, we have to deal with the intrinsic issues of distributed systems. In particular,
by the CAP theorem [23] we cannot have, at the same time, consistency, availability and
partition-tolerance. Hence, some compromises have to be taken, depending on the application
context. For instance, in a scenario with low network traffic we can aim for correctness,
implementing a robust, but slow, communication protocol. Vice versa, when nodes exchange
data at a high rate (or when the network is not stable), communication should take very
short time, hence we may prefer to renounce to consistency in favour of eventual consistency.

For these reasons, a flexible and modular implementation is mandatory, where modules
can be implemented in different ways, depending on the application context. Hence, we
present a modular architecture suitable to implement AbU nodes (see Fig. 5). A AbU node
consists in a state (mapping resources to values), an execution pool (a set of updates to
execute) and a list of ECA rules (modeling the node’s behavior). A ECA rules engine
module is in charge of executing the updates in the pool and to discover new rules to trigger,
potentially on external nodes (distributed discovery). This module also implements the
attribute-based memory updates mechanism and deals with IoT inputs (from sensors) and
outputs (to actuators), which are accessed by means of a dedicated interface. A separate
Device drivers module translates low-level IoT devices primitives to high-level signals for the
rule engine and vice versa. The Distribution module is in charge of joining a cluster of AbU
nodes and exchanging messages with them. It embodies all distributed infrastructure-related
aspects, that can be tuned to meet the desired context-related requirements. Moreover, it
provides the communication APIs needed by the rule engine to implement the (distributed)
discovery phase (and, in turn, attributed-based memory updates). For instance, the labels
▶ T and ▷ T of the AbU semantics generate a broadcast communication.

In some respects, AbU is quite close to AbC, so we can borrow from one of its imple-
mentation the mechanisms that can be easily adapted to AbU. In particular, we can exploit
the GoAt [1, 24] library, in order to implement the Distribution module. GoAt is written
in Golang, so we can delegate the communication layer to a Go routine, encapsulating
the send and receive primitives of AbC and the cluster infrastructure, both provided by
GoAt. Finally, the Device drivers module can be built on top of GOBOT [25], a mature Go
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library for the IoT ecosystem, with a great availability of IoT devices drivers. In Fig. 5, we
show a diagram describing the structure of a AbU node (here, the Device drivers and the
Distribution modules can exploit GOBOT and GoAt, respectively). At the time of writing,
we are developing a prototype implementation for the AbU calculus, written in Golang and
following the modular architecture sketched above. The Distribution module is now based
on HashiCorp’s Memberlist [26], a popular Go library for cluster membership and failures
detection that uses a gossip based protocol. We plan to integrate the module with GoAt in
the near future.

6 Conclusion
In this paper we have introduced AbU, a new calculus merging the simplicity of ECA
programming with attribute-based memory updates. This new time-coupled, space-uncoupled
interaction mechanism can be seen as the memory-based counterpart of attribute-based
communication hinged on message-passing, and fits neatly within the ECA programming
paradigm. We have shown how AbC components can be encoded in AbU systems; this result
is not meant to prove that AbU subsumes AbC, but to highlight that it is possible to encode
attribute-based communication within the ECA rules programming paradigm. Furthermore,
we have provided a syntactic termination criterion for AbU systems, in order to assure that
a AbU system does not exhibit divergent behaviors due to some cyclic interactions between
nodes rules. Finally, we have discussed how the proposed calculus can be implemented, in a
fully-distributed and IoT-ready setting.

Future work.

The present work is the basis for several research directions. First, we plan to encode in
AbU a real-world ECA language like IRON (in particular, its core version presented in [15]),
similarly to what we have done for AbC. Then, we are interested in porting to AbU the
verification techniques developed for IRON and other ECA languages [27, 31, 32]. Efficient
distributed implementations of AbU could be obtained by extending the RETE algorithm [12]
with the attribute-based memory updates mechanism. The latter can be implemented using
RPCs or message-passing, taking inspiration from the implementations of AbC [1, 21, 24],
as discussed in Section 5. Another interesting issue is distributed runtime verification and
monitoring, in order to detect violations at runtime of given correctness properties, e.g.,
expressed in temporal logics like the µ-calculus [28]. These would be useful, for instance,
to extend (and refine) the termination criterion presented in Section 3. Similarly, we can
define syntactic criteria and corresponding verification mechanisms to guarantee confluence.
Indeed, in some practical IoT scenarios, it is important to ensure that execution order does
not impact the overall behavior (which is, basically, a sort of rule determinism). Finally,
we can think of defining suitable behavioural equivalences for AbU systems, e.g., based on
bisimulations, to compare systems with their specifications.
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A Full Proofs

A.1 Proofs of Section 3
Proof of Proposition 2.

For this proposition we give a simple sketch of the proof.

Proposition 2 (Termination of the wave semantics)

Sketch. The proof relies on the following observation: each discovered update cannot be
considered twice, within the same discovery phase. When an update upd is executed and, at
the same time, it is removed from the execution pool, if the ECA dependency graph is acyclic
then another instance of upd cannot be inserted again in the pool, during the discovery phase
originated by upd. This ensures that the number of updates to execute (after all possible
discovery phases) is finite and hence, eventually, the execution pool becomes empty, meaning
that a stable system is reached. ◀

A.2 Proofs of Section 4
Proof of Theorem 3.

In order to prove the theorem, we need some supporting lemmas and some preliminary notions.
Given a AbU system S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩, we denote with S[R′

k⟨Σ′
k, Θ′

k⟩ ≫
Rk⟨Σk, Θk⟩], for k ∈ [1..n], the system S where Rk⟨Σk, Θk⟩ is replaced by R′

k⟨Σ′
k, Θ′

k⟩. We
use the same notation for replacing AbC components, namely we denote with C[Γk : Pk ≫
Γ′

k : P ′
k], for k ∈ [1..n], the component C = Γ1 : P1 ∥ . . . ∥ Γn : Pn where Γk : Pk is

replaced by Γ′
k : P ′

k. Given an AbC component C = Γ1 : P1 ∥ . . . ∥ Γn : Pn, the translation
functions T h, with h ∈ [1..n], retrieve all the auxiliary resources, in particular all rule flags,
needed to model the behavior of the processes Ph (see Section 4 of [29]). The functions
T h are inductively defined on the structure of each Ph. In particular, there is a one-to-one
correspondence between the AbC process’ instances in Ph and the generated AbU rules
(see again Section 4 of [29]). The latter, have an unique rule flag, of the form Phri, with
h ∈ [1..n] and i ≥ 0. Hence, for each residual process P ′

h of Ph, i.e., a process we can
obtain applying zero or more times the rewriting semantics of AbC, we can associate a firing
rule firing(P ′

h), namely the rule flag that must be active, in order to execute the process
P ′

h. Note that, Ph is a residual of Ph itself. The notion of residual can be extended to
components: C ′ is a residual of C if we can obtain C ′ applying zero or more times the
rewriting semantics of AbC to C. We can then define the firing rules set firing(C ′) of the
residual component C ′ = Γ′

1 : P ′
1 ∥ . . . ∥ Γ′

n : P ′
n as {firing(P ′

h) | h ∈ [1..n]}. Note that,
firing(C) = {firing(P1), . . . , firing(Pn)} = {P1r0, . . . , Pnr0}, by definition.

▶ Definition 4 (Firing AbU system). A AbU system S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩ is
firing for the AbC component C ′ = Γ′

1 : P ′
1 ∥ . . . ∥ Γ′

n : P ′
n, residual of C, when all the

following hold, for each k ∈ [1..n]:
firing(P ′

k) = Phri

Σk(Phri) = tt
DefUpds(Rk, {Phri}, Σk) ∪ LocalUpds(Rk, {Phri}, Σk) ⊆ Θk

ExtTasks(Rk, {Phri}, Σk) = task1 . . . taskm

∀j ∈ [1..n] \ {k} . {JactKΣj | ∃l ∈ [1..m] . taskl = @φ : act ∧ Σj |= φ} ⊆ Θj
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▶ Proposition 5. We can formulate the following observations, assuming a component
C = Γ1 : P1 ∥ . . . ∥ Γn : Pn of AbC and a AbU system S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩,
such that Ri = T i(Pi) for i ∈ [1..n].
A Let Γ : P be a residual of Γi : Pi, with i ∈ [1..n], and e an expression. If Σi ⪰ Γ : P and

JeK(Γi) = v, for some v, then JT (e)K(Σi) = v.
B Let Γ : P be a residual of Γi : Pi, with i ∈ [1..n], and Π a predicate. If Σi ⪰ Γ : P ,

Γ |= Π[v/x], for some v, and Σi(msg) = v, then Σi |= Repl(T (Π), x).
C Let C ′ = Γ′

1 : P ′
1 ∥ . . . ∥ Γ′

n : P ′
n be residual of C, Γ′

1 : P ′
1

δ−_ Γ′′
1 : P ′′

1 , for some AbC
process label δ, and S ⪰ C ′. If S −_∗ S′, for some S′ = R1⟨Σ′

1, Θ′
1⟩ ∥ . . . ∥ Rn⟨Σ′

n, Θ′
n⟩, by

executing the AbU rule translation of P ′
1, then no updates on attributes of Γ′

i on the AbU
node i, for i ∈ [2..n], are performed and no rule flags on the AbU node i, with i ∈ [2..n],
are modified. In other words: Σi(a) = Σ′

i(a), for all attributes a of Γ′
i, with i ∈ [2..n];

and Σi(Pkrj) = Σi(Pkrj), for all i ∈ [2..n], k ∈ [1..n] and j ≥ 0.
D Let Γ′

i : P ′
i and Γ′

j : P ′
j be residuals of Γi : Pi and Γj : Pj, respectively, with i, j ∈ [1..n],

and Π a predicate. If Σi ⪰ Γ′
i : P ′

i , Σj ⪰ Γ′
j : P ′

j, {|Π|}(Γ′
i) = Π′ and Γ′

j |= Π′, then
Σj |= {|Ext(T (Π))|}Σi.

Proof. Observations A and B are trivial, they hold by definition of the translation function
T . For the observation C, we can note, by the definition of T , that each action in the
translated rule originated from P ′

1 is local, hence all modifications are on the current node
1. This means that no updates on attributes and rule flags are made on other nodes i,
with i ∈ [2..n]. The only rules updating external nodes are the send rules, with the action
msg ← T (e), which modifies a state in a node i such that i ∈ [2..n]. But, msg is an auxiliary
resource introduced by the translation, it is not an attribute of any Γi, with i ∈ [2..n], nor
a rule flag of any i, with i ∈ [2..n]. Finally, for the observation D, we have that {|Π|}(Γ′

i)
substitutes the instances this.a with Γ′

i(a) = v in Π, and lets untouched the instances a.
Instead, Ext(Π) substitutes the instances of a not prefixed by this. (in Π) with a (and then
apply the translation T ). It is easy to note that in Γ′

j |= Π′ each original instance of this.a

in Π now takes the value Γ′
i(a) and each instance of a takes the value Γ′

j(a). Similarly, in
Σj |= {|Ext(T (Π))|}Σi each original instance of this.a in Π takes the value Σi(a) and each
instance of a takes the value Σj(a). But, by the observation A, we have that Γ′

i(a) = Σi(a)
and Γ′

j(a) = Σj(a). ◀

▶ Lemma 6. Consider a AbC component C = Γ1 : P1 ∥ . . . ∥ Γn : Pn and a AbU system
S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩, such that Ri = T i(Pi), for i ∈ [1..n]. Let C ′ = Γ′

1 :
P ′

1 ∥ . . . ∥ Γ′
n : P ′

n be a residual of C such that S ⪰ C ′ and S is firing for C ′. Let Γ : P be
a component of C ′, namely Γ : P = Γ′

k : P ′
k, for k ∈ [1..n]. Then, for all Γ′, P ′ such that

Γ : P
δ−_ Γ′ : P ′, for some δ, there exists a AbU system S′ = R1⟨Σ′

1, Θ′
1⟩ ∥ . . . ∥ Rn⟨Σ′

n, Θ′
n⟩

such that S −_∗ S′, S′ ⪰ C ′′ and S′ is firing for C ′′, with C ′′ = C ′[Γ : P ≫ Γ′ : P ′].

Proof. The only rule applicable is (Comp), namely Γ : P
δ−_ Γ′ : P ′ is obtained from

Γ : P
δ−→ Γ′ : P ′. The proof is by induction on the derivation tree for Γ : P

δ−→ Γ′ : P ′.
Depending on the last rule used in the derivation, we have the following cases.
Case (Zero). Then: δ = ff⟨0⟩; P ′ = P = 0; Γ′ = Γ. Setting S′ = S, we obtain trivially the

conclusion, since C ′ = C.
Case (Brd). Then: δ = Π⟨v⟩, for some Π and v; P = ⟨e @ Π′⟩.P ′′, for some P ′′, Π′ such that
{|Π′|}(Γ) = Π and e such that JeK(Γ) = v; P ′ = P ′′; Γ′ = Γ. Let Phri = firing(P ) be the
firing rule of P and j = Next(i). The translation of P generates the following AbU rule:

Phri ⋗ Phri ← ⊥ Phrj ← ⊤, @(Phri = ⊤ ∧ Ext(Π)) : msg ← T (e) (1)



20 A Calculus for Attribute-based Memory Updates

We assumed that Γ : P is the AbC component Γ′
k : P ′

k of C ′, so we are on the node k of the
AbU translation, i.e., Rk⟨Σk, Θk⟩. Since S is firing for C ′, we have that Θk contains the up-
date upd = (Phri, ff)(Phrj , tt), by definition of DefUpds(Rk, {Phri}, Σk). Since the rule in
(1) is not local we have that LocalUpds(Rk, {Phri}, Σk) = ∅. For the same reason, we have
that ExtTasks(Rk, {Phri}, Σk) = T , with T = @(Ext(Π)) : msg ← v, given JT (e)KΣk = v

(justified by Prop. 5A). Furthermore, for all w ∈ [1..n]\{k} we have that Θw is a superset
of {(msg, v) | Σw |= Ext(Π)}. When the AbU semantics evolves with the rule (Step) ap-
plied to the system S, performing an execution step (Exec), the update upd is committed,
obtaining Σ′

k = Σk[ff/Phri tt/Phrj ]. The discovery phase launched during (Step) com-
putes Θ′

k = Θk\{upd}∪DefUpds(Rk, {Phri, Phrj}, Σ′
k)∪LocalUpds(Rk, {Phri, Phrj}, Σ′

k).
By definition of T , and Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that
Θ′

k is a superset of DefUpds(Rk, {Phrj}, Σ′
k) ∪ LocalUpds(Rk, {Phrj}, Σ′

k). The last two
requirements of the Def. 4 are satisfied by the definition of (Step), that guarantees to
perform the discovery of T ′ = ExtTasks(Rk, {Phri, Phrj}, Σk) by applying the rule (Disc)
with T ′ on all nodes w ∈ [1..n] \ {k}. This means that S′ = S[Rk⟨Σ′

k, Θ′
k⟩ ≫ Rk⟨Σk, Θk⟩]

is firing for C ′′. Furthermore, no attributes of Γ are modified (only auxiliary resources
added by the translation are involved in the update). Hence, we also have that S′ ⪰ C ′′,
concluding the proof for this case.

Case (Rcv). Then: δ = Π(v), for some Π such that Γ |= Π and v; P = (x | Π′).P ′′, for some
P ′′ and Π′ such that Γ |= Π′[v/x]; P ′ = P ′′[v/x]; Γ′ = Γ. Let Phri = firing(P ) be the
firing rule of P and j = Next(i). The translation of P generates the following AbU rule:

Phri (Phri = ⊤ ∧ Repl(T (Π), x)) : x← msg Phri ← ⊥ Phrj ← ⊤ (2)

We assumed that Γ : P is the AbC component Γ′
k : P ′

k of C ′, so we are on the node k of
the AbU translation, i.e., Rk⟨Σk, Θk⟩. Since S is firing for C ′, we have that Θk contains
the update upd = (x, v)(Phri, ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri}, Σk),
given Σk(msg) = v. Note that, the satisfiability of the condition Repl(T (Π), x)) is
guaranteed by Prop. 5B. Since the rule in (2) is local and it does not have default
actions, we have that DefUpds(Rk, {Phri}, Σk) = ∅ and ExtTasks(Rk, {Phri}, Σk) =
ε. When the AbU semantics evolves with the rule (Step) applied to the system S,
performing an execution step (Exec), the update upd is committed, obtaining Σ′

k =
Σk[v/x ff/Phri tt/Phrj ]. The discovery phase launched during (Step) computes Θ′

k =
Θk \ {upd} ∪ DefUpds(Rk, {x, Phri, Phrj}, Σ′

k) ∪ LocalUpds(Rk, {x, Phri, Phrj}, Σ′
k). By

definition of T , and Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that
Θ′

k is a superset of DefUpds(Rk, {Phrj}, Σ′
k) ∪ LocalUpds(Rk, {Phrj}, Σ′

k). The last two
requirements of the Def. 4 are satisfied by the definition of (Step), that guarantees to
perform the discovery of T ′ = ExtTasks(Rk, {x, Phri, Phrj}, Σk) by applying the rule (Disc)
with T ′ on all nodes w ∈ [1..n] \ {k}. This means that S′ = S[Rk⟨Σ′

k, Θ′
k⟩ ≫ Rk⟨Σk, Θk⟩]

is firing for C ′′ (the substitution [v/x] in P ′′ is recorded by updating the resource x with
the value v). Furthermore, no attributes of Γ are modified (only auxiliary resources
added by the translation are involved in the update). Hence, we also have that S′ ⪰ C ′′,
concluding the proof for this case.

Case (Upd). Then: P = [a := e]P ′′, for some P ′′ and e; Γ′ = Γ[v/a]′, given JeK(Γ) = v and
Γ[v/a] : P ′′ δ−→ Γ[v/a]′ : P ′. Let Phri = firing(P ) be the firing rule of P and j = Next(i).
The translation of P generates the following AbU rule:

Phri (Phri = ⊤) : a← T (e) Phri ← ⊥ Phrj ← ⊤ (3)

We assumed that Γ : P is the AbC component Γ′
k : P ′

k of C ′, so we are on the node k of the
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AbU translation, i.e., Rk⟨Σk, Θk⟩. Since S is firing for C ′, we have that Θk contains the up-
date upd = (a, v)(Phri, ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri}, Σk). Here, the
value v in (a, v) is justified by Prop. 5A. Since the rule in (3) is local and it does not have de-
fault actions, we have that DefUpds(Rk, {Phri}, Σk) = ∅ and ExtTasks(Rk, {Phri}, Σk) =
ε. When the AbU semantics evolves with the rule (Step) applied to the system S,
performing an execution step (Exec), the update upd is committed, obtaining Σ′′

k =
Σk[v/a ff/Phri tt/Phrj ]. The discovery phase launched during (Step) computes Θ′′

k =
Θk \ {upd} ∪ DefUpds(Rk, {a, Phri, Phrj}, Σ′′

k) ∪ LocalUpds(Rk, {a, Phri, Phrj}, Σ′′
k). By

definition of T , and Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that
Θ′′

k is a superset of DefUpds(Rk, {Phrj}, Σ′′
k) ∪ LocalUpds(Rk, {Phrj}, Σ′′

k). The last two
requirements of the Def. 4 are satisfied by the definition of (Step), that guarantees to
perform the discovery of T = ExtTasks(Rk, {a, Phri, Phrj}, Σk) by applying the rule (Disc)
with T on all nodes w ∈ [1..n] \ {k}. This means that S′′ = S[Rk⟨Σ′′

k , Θ′′
k⟩ ≫ Rk⟨Σk, Θk⟩]

is firing for C ′′′ = C ′[Γ : P ≫ Γ[v/a] : P ′′]. Furthermore, the only attribute modified
in Γ is a, which is updated with the value v by the AbU semantics in Σ′′

k . Hence, we
also have that S′′ ⪰ C ′′′. Since the derivation tree for Γ[v/a] : P ′′ δ−→ Γ[v/a]′ : P ′

is smaller than the derivation tree for Γ : P
δ−→ Γ[v/a]′ : P ′, by inductive hypothesis

we have that there exists S′ such that S′ ⪰ C ′′ and S′ is firing for C ′′, noting that
C ′′ = C ′′′[Γ[v/a] : P ′′ ≫ Γ[v/a]′ : P ′], which concludes the proof for this case.

Case (Aware). Then: P = [Π]P ′′, for some P ′′ and Π such that Γ |= Π, given Γ : P ′′ δ−→ Γ′ :
P ′. Let Phri = firing(P ) be the firing rule of P and j = Next(i). The translation of P

generates the following AbU rule:

Phri Vars(Π) (Phri = ⊤ ∧ T (Π)) : Phri ← ⊥ Phrj ← ⊤ (4)

We assumed that Γ : P is the AbC component Γ′
k : P ′

k of C ′, so we are on the node
k of the AbU translation, i.e., Rk⟨Σk, Θk⟩. Since S is firing for C ′, we have that Θk

contains the update upd = (Phri, ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri}, Σk).
Since the rule in (4) is local and it does not have default actions, we have that
DefUpds(Rk, {Phri}, Σk) = ∅ and ExtTasks(Rk, {Phri}, Σk) = ε. When the AbU seman-
tics evolves with the rule (Step) applied to the system S, performing an execution step
(Exec), the update upd is committed, obtaining Σ′′

k = Σk[ff/Phri tt/Phrj ]. The discovery
phase launched during (Step) computes Θ′′

k = Θk\{upd}∪DefUpds(Rk, {Phri, Phrj}, Σ′′
k)∪

LocalUpds(Rk, {Phri, Phrj}, Σ′′
k). By definition of T , and Next(i) = j, we have that

firing(P ′′) = Phrj . Hence, we have that Θ′′
k is a superset of DefUpds(Rk, {Phrj}, Σ′′

k) ∪
LocalUpds(Rk, {Phrj}, Σ′′

k). The last two requirements of Def. 4 are satisfied by the defini-
tion of (Step), guaranteeing to perform the discovery of T = ExtTasks(Rk, {Phri, Phrj}, Σk)
by applying the rule (Disc) with T on all nodes w ∈ [1..n] \ {k}. This means that
S′′ = S[Rk⟨Σ′′

k , Θ′′
k⟩ ≫ Rk⟨Σk, Θk⟩] is firing for C ′′′ = C ′[Γ : P ≫ Γ : P ′′]. Furthermore,

no attributes of Γ are modified (only auxiliary resources added by the translation are
involved in the update). Hence, we also have that S′′ ⪰ C ′′′. Since the derivation tree
for Γ : P ′′ δ−→ Γ′ : P ′ is smaller than the derivation tree for Γ : P

δ−→ Γ′ : P ′, by inductive
hypothesis we have that there exists S′ such that S′ ⪰ C ′′ and S′ is firing for C ′′, noting
that C ′′ = C ′′′[Γ : P ′′ ≫ Γ′ : P ′], which concludes the proof for this case.

Case (Sum). Then: P = Pa + Pb, for some Pa and Pb, given Γ : Pa
δ−→ Γ′ : P ′. The

symmetric case is analogous. Let Phri = firing(P ) be the firing rule of P , j = Next(i)
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and w = Next(j). The translation of P generates the following AbU rules:

Phri (Phri = ⊤) : Phri ← ⊥ Phrj ← ⊤
Phri (Phri = ⊤) : Phri ← ⊥ Phrk ← ⊤

(5)

We assumed that Γ : P is the AbC component Γ′
k : P ′

k of C ′, so we are on the node
k of the AbU translation, i.e., Rk⟨Σk, Θk⟩. Since S is firing for C ′, we have that Θk

contains the update upd = (Phri, ff)(Phrj , tt), by definition of LocalUpds(Rk, {Phri}, Σk),
and assuming that AbC and AbU schedulers make the same decisions (i.e., Pa and the
first rule in 5 are chosen). Since the rules in (5) are local and they do not have default
actions, we have that DefUpds(Rk, {Phri}, Σk) = ∅ and ExtTasks(Rk, {Phri}, Σk) =
ε. When the AbU semantics evolves with the rule (Step) applied to the system S,
performing an execution step (Exec), the update upd is committed, obtaining Σ′′

k =
Σk[ff/Phri tt/Phrj ]. The discovery phase launched during (Step) computes Θ′′

k = Θk \
{upd}∪DefUpds(Rk, {Phri, Phrj}, Σ′′

k)∪LocalUpds(Rk, {Phri, Phrj}, Σ′′
k). By definition of

T , and Next(i) = j, we have that firing(P ′′) = Phrj . Hence, we have that Θ′′
k is a superset

of DefUpds(Rk, {Phrj}, Σ′′
k) ∪ LocalUpds(Rk, {Phrj}, Σ′′

k). The last two requirements of
the Def. 4 are satisfied by the definition of (Step), that guarantees to perform the
discovery of T = ExtTasks(Rk, {Phri, Phrj}, Σk) by applying the rule (Disc) with T on all
nodes w ∈ [1..n] \ {k}. This means that S′′ = S[Rk⟨Σ′′

k , Θ′′
k⟩ ≫ Rk⟨Σk, Θk⟩] is firing for

C ′′′ = C ′[Γ : P ≫ Γ : Pa]. Furthermore, no attributes of Γ are modified (only auxiliary
resources added by the translation are involved in the update). Hence, we also have that
S′′ ⪰ C ′′′. Since the derivation tree for Γ : Pa

δ−→ Γ′ : P ′ is smaller than the derivation
tree for Γ : P

δ−→ Γ′ : P ′, by inductive hypothesis we have that there exists S′ such
that S′ ⪰ C ′′ and S′ is firing for C ′′, noting that C ′′ = C ′′′[Γ : Pa ≫ Γ′ : P ′], which
concludes the proof for this case (the symmetric counterpart where the scheduler choses
Pb is analogous).

Case (Rec). Then: P = K, given K ≜ Pw, with w ∈ [1..n], and Γ : Pw
δ−→ Γ′ : P ′. Let

Phri = firing(P ) be the firing rule of P . The translation of P generates the following
AbU rule:

Phri (Phri = ⊤) : Phri ← ⊥Pkr0 ← ⊤ (6)

We assumed that Γ : P is the AbC component Γ′
k : P ′

k of C ′, so we are on the node k of the
AbU translation, i.e., Rk⟨Σk, Θk⟩. Since S is firing for C ′, we have that Θk contains the up-
date upd = (Phri, ff)(Pwr0, tt), by definition of LocalUpds(Rk, {Phri}, Σk). Since the rule
in (6) is local and it does not have default actions, we have that DefUpds(Rk, {Phri}, Σk) =
∅ and ExtTasks(Rk, {Phri}, Σk) = ε. When the AbU semantics evolves with the
rule (Step) applied to the system S, performing an execution step (Exec), the up-
date upd is committed, obtaining Σ′′

k = Σk[ff/Phri tt/Pwr0]. The discovery phase
launched during (Step) computes Θ′′

k = Θk \ {upd} ∪ DefUpds(Rk, {Phri, Pwr0}, Σ′′
k) ∪

LocalUpds(Rk, {Phri, Pwr0}, Σ′′
k). By definition of T , we have that firing(Pw) = Pwr0.

Hence, we have that Θ′′
k is a superset of DefUpds(Rk, {Pwr0}, Σ′′

k)∪LocalUpds(Rk, {Pwr0}, Σ′′
k).

The last two requirements of the Def. 4 are satisfied by the definition of (Step), that
guarantees to perform the discovery of T = ExtTasks(Rk, {Phri, Pwr0}, Σk) by applying
the rule (Disc) with T on all nodes w ∈ [1..n]\{k}. This means that S′′ = S[Rk⟨Σ′′

k , Θ′′
k⟩ ≫

Rk⟨Σk, Θk⟩] is firing for C ′′′ = C ′[Γ : P ≫ Γ : Pw]. Furthermore, no attributes of Γ are
modified (only auxiliary resources added by the translation are involved in the update).
Hence, we also have that S′′ ⪰ C ′′′. Since the derivation tree for Γ : Pw

δ−→ Γ′ : P ′ is smaller
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than the derivation tree for Γ : P
δ−→ Γ′ : P ′, by inductive hypothesis we have that there

exists S′ such that S′ ⪰ C ′′ and S′ is firing for C ′′, noting that C ′′ = C ′′′[Γ : Pw ≫ Γ′ : P ′],
which concludes the proof for this case.

◀

▶ Lemma 7 (Helper). Consider a AbC component C = Γ1 : P1 ∥ . . . ∥ Γn : Pn and a AbU
system S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩, such that Ri = T i(Pi), for i ∈ [1..n]. Let C ′′ be
a residual of C. If S ⪰ C ′′ and S is firing for C ′′, then for all C ′ such that C ′′ Π(v)−−−_ C ′, for
some Π and v, there exists a AbU system S′ such that S −_∗ S′, S′ ⪰ C ′ and S′ is firing for
C ′.

Proof. Since C ′′ is a residual of C, it is of the form Γ′′
1 : P ′′

1 ∥ . . . ∥ Γ′′
n : P ′′

n , with
Γ′′

i : P ′′
i residuals of Γi : Pi, for i ∈ [1..n]. Then, C ′ = Γ′

1 : P ′
1 ∥ . . . ∥ Γ′

n : P ′
n, given

Γ′′
i : P ′′

i

Π(v)−−−_ Γ′
i : P ′

i , for each i ∈ [1..n]. By Lem. 6, we have that there exists S1 such that
S −_∗ S1, S1 ⪰ C1 and S1 is firing for C1, where C1 = C ′′[Γ′′

1 : P ′′
1 ≫ Γ′

1 : P ′
1]. Applying

again Lem. 6, we have that there exists S2 such that S1 −_∗ S2, S2 ⪰ C2 and S2 is firing
for C2, where C2 = C1[Γ′′

2 : P ′′
2 ≫ Γ′

2 : P ′
2]. We can repeat this reasoning n− 2 times and

prove that there exists Sn such that Sn−1 −_∗ Sn, Sn ⪰ Cn and Sn is firing for Cn, where
Cn = Cn−1[Γ′′

n : P ′′
n ≫ Γ′

n : P ′
n]. Note that, for each step i, with i ∈ [1..n], we have that

no modifications of the state of the nodes j, with j ∈ [1..n] \ {i}, are made on attributes
and rule flags (by Prop. 5C). At this point we can note that Cn = C ′, hence we have that
S′ ⪰ C ′ and S′ is firing for C ′, taking S′ = Sn. ◀

▶ Lemma 8. Consider a AbC component C = Γ1 : P1 ∥ . . . ∥ Γn : Pn and a AbU system
S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩, such that Ri = T i(Pi), for i ∈ [1..n]. Let C ′′ be a
residual of C. If S ⪰ C ′′ and S is firing for C ′′, then for all C ′ such that C ′′ λ−_ C ′ there
exists a AbU system S′ such that S −_∗ S′, S′ ⪰ C ′ and S′ is firing for C ′.

Proof. Since C ′′ is a residual of C, it is of the form Γ′′
1 : P ′′

1 ∥ . . . ∥ Γ′′
n : P ′′

n , with Γ′′
i : P ′′

i

residuals of Γi : Pi, for i ∈ [1..n]. Let Cr = Γ′′
2 : P ′′

2 ∥ . . . ∥ Γ′′
n : P ′′

n , i.e., C ′′ = Γ′′
1 : P ′′

1 ∥ Cr.
The proof is by case analysis on λ.
Case λ = τ . Then, C ′ = Γ′

1 : P ′
1 ∥ Cr, given Γ′′

1 : P ′′
1

Π⟨v⟩−−−_Γ′
1 : P ′

1, for some Π and v, and

Cr
Π(v)−−−_ , i.e., Γ′′

i : P ′′
i

Π(v)−−−_ for each i ∈ [2..n]. By Lem. 6, we have that there exists S′

such that S −_∗ S′, S′ ⪰ C1 and S′ is firing for C1, where C1 = C ′′[Γ′′
1 : P ′′

1 ≫ Γ′
1 : P ′

1].
Since no modifications of the state of the node i, with i ∈ [2..n], are made on attributes
and rule flags (by Prop. 5C), we have that S′ ⪰ Cr and S′ is firing for Cr. Since Cr is
unmodified, we can conclude that S′ ⪰ C ′ and S′ is firing for C ′.

Case λ = Π⟨v⟩. Then, C ′ = Γ′
1 : P ′

1 ∥ C ′
r, given Γ′′

1 : P ′′
1

Π⟨v⟩−−−_ Γ′
1 : P ′

1, for some Π and v,
C ′

r = Γ′
2 : P ′

2 ∥ . . . ∥ Γ′
n : P ′

n and Cr
Π(v)−−−_ C ′

r, i.e., Γ′′
i : P ′′

i

Π(v)−−−_ Γ′
i : P ′

i for each i ∈ [2..n].
By Lem. 6, there exists S1 such that S −_∗ S1, S1 ⪰ C1 and S1 is firing for C1, where
C1 = C ′′[Γ′′

1 : P ′′
1 ≫ Γ′

1 : P ′
1]. Since no modifications of the state of the nodes i, with

i ∈ [2..n], are made on attributes and rule flags (by Prop. 5C), we have that S1 ⪰ Cr and
S1 is firing for Cr. Then, applying Lem. 7 on Cr, we have that there exists S′ such that
S′ ⪰ C ′

r and S′ is firing for C ′
r. So, we can conclude that S′ ⪰ C ′ and S′ is firing for C ′,

noting that C ′ = C1[Cr ≫ C ′
r].

Case λ = Π(v). Then, C ′ = Γ′
1 : P ′

1 ∥ C ′
r, given Γ′′

1 : P ′′
1

Π(v)−−−_ Γ′
1 : P ′

1, for some Π and v,
C ′

r = Γ′
2 : P ′

2 ∥ . . . ∥ Γ′
n : P ′

n and Cr
Π(v)−−−_ C ′

r, i.e., Γ′′
i : P ′′

i

Π(v)−−−_ Γ′
i : P ′

i for each i ∈ [1..n].
By Lem. 6, there exists S1 such that S −_∗ S1, S1 ⪰ C1 and S1 is firing for C1, where



24 A Calculus for Attribute-based Memory Updates

C1 = C ′′[Γ′′
1 : P ′′

1 ≫ Γ′
1 : P ′

1]. Since no modifications of the state of the nodes i, with
i ∈ [2..n], are made on attributes and rule flags (by Prop. 5C), we have that S1 ⪰ Cr and
S1 is firing for Cr. Then, applying Lem. 7 on Cr, we have that there exists S′ such that
S′ ⪰ C ′

r and S′ is firing for C ′
r. So, we can conclude that S′ ⪰ C ′ and S′ is firing for C ′,

noting that C ′ = C1[Cr ≫ C ′
r].

◀

▶ Lemma 9 (Input). Consider a AbC component C and its corresponding AbU encoding
S = T (C). Then there exists S′ such that S −▶∗ S′, S′ is firing for C and S′ ⪰ C.

Proof. Suppose that C is composed by n components, i.e., C = Γ1 : P1 ∥ . . . ∥ Γn :
Pn. Consider its AbU translation S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩ = T (C). By
definition, we have that Ri = T i(Pi), for i ∈ [1..n]. The translation yields n (one for
each component) initial rule flags P1r0, . . . , Pnr0, initially set to ff (i.e., Σi(Pir0) = ff,
for i ∈ [1..n]). Suppose to perform an input (Input) on the node 1, setting P1r0 to tt,
namely Σ′

1 = Σ1[tt/P1r0] and Θ1 = DefUpds(R1, {P1r0}, Σ′
1) ∪ LocalUpds(R1, {P1r0}, Σ′

1).
The input is wrapped into the AbU rule (Step), that guarantees to perform the discovery
of T 1 = task1 . . . taskw = ExtTasks(R1, {P1r0}, Σ′

1), by applying the rule (Disc) with T 1

on all nodes j ∈ [2..n]. This potentially initialize the pools of other nodes, namely for
all j ∈ [2..n] we have that Θj = {JactKΣj | ∃l ∈ [1..w] . taskl = @φ : act ∧ Σj |= φ}.
Hence we have S ▶T 1

−−−_ S1, where S1 = R1⟨Σ′
1, Θ1⟩ ∥ R2⟨Σ2, Θ2⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩.

Now, we can perform another input (Input) on the node 2, setting P2r0 to tt, namely
Σ′

2 = Σ2[tt/P2r0] and Θ′
2 = Θ2 ∪DefUpds(R2, {P2r0}, Σ′

2)∪ LocalUpds(R2, {P2r0}, Σ′
2). The

input is wrapped into the AbU rule (Step), that guarantees to perform the discovery of
T 2 = task1 . . . taskm = ExtTasks(R2, {P2r0}, Σ′

2), by applying the rule (Disc) with T 2 on all
nodes j ∈ [1..n] \ {2}. This potentially enlarges the pools of other nodes, namely for all
j ∈ [1..n] \ {2} we have that Θ′

j = Θj ∪ {JactKΣj | ∃l ∈ [1..m] . taskl = @φ : act ∧ Σj |= φ}.

Hence we have S1 ▶T 2

−−−_ S2, where S2 = R1⟨Σ′
1, Θ′

1⟩ ∥ R2⟨Σ′
2, Θ′

2⟩ ∥ . . . ∥ Rn⟨Σn, Θ′
n⟩. We

can repeat this reasoning n− 2 times, with n− 2 subsequent input steps, obtaining Sn such
that Sn−1 ▶T n

−−−_ Sn. Since we are not performing execution steps (Exec), the pools of the
nodes can only enlarged. Hence, it is easy to note that all requirements of Def. 4 are satisfied,
implying that Sn is firing for C. Furthermore, no attributes of C are modified, so Sn ⪰ C.
Finally, setting S′ = Sn and −▶∗ = ▶T 1

−−−_ . . .
▶T n

−−−_, we can conclude that that S −▶∗ S′, S′ is
firing for C and S′ ⪰ C. ◀

Theorem 3 (AbC to AbU correctness)

Proof. Suppose that C is composed by n components, i.e., C = Γ1 : P1 ∥ . . . ∥ Γn : Pn.
Consider its AbU translation S = R1⟨Σ1, Θ1⟩ ∥ . . . ∥ Rn⟨Σn, Θn⟩ = T (C). By definition,
we have that Ri = T i(Pi), for i ∈ [1..n]. By Lem. 9, we have that there exists S′′ such
that S −▶∗ S′′, S′′ is firing for C and S′′ ⪰ C. This, in particular, means that each Pi of
C is ready to execute. Now, suppose that C −_∗ C ′ comprises m semantic steps, namely
C

λ1−_ C1 λ2−_ . . .
λm−−_ C ′, for some component labels λ1, λ2, . . . , λm. Applying Lem. 8, we

have that there exists S1 such that S′′ −_∗ S1, S1 ⪰ C1 and S1 is firing for C1. We can repeat
this reasoning m− 1 times and prove that there exists Sm such that Sm−1 −_∗ Sm, Sm ⪰ Cm

and Sm is firing for Cm (which coincides with C ′). By composition of all (Step) rules (given
by Lem. 8) we can conclude that S′′ −_∗ S′ such that S′ ⪰ C ′, for S′ = Sm. ◀
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