
Composable Partial Multiparty Session Types?

Claude Stolze, Marino Miculan[0000−0003−0755−3444], and
Pietro Di Gianantonio[0000−0002−0638−4610]

Dep. of Mathematics, Computer Science and Physics, University of Udine, Italy
firstname.lastname@uniud.it

Abstract. We introduce partial sessions and partial (multiparty) ses-
sion types, in order to deal with open systems, i.e., systems with missing
components. Partial sessions can be composed, and the type of the result-
ing system is derived from those of its components without knowing any
suitable global type nor the types of missing parts. Incompatible types,
due to e.g. miscommunications or deadlocks, are detected at the merging
phase. We apply these types to a process calculus, for which we prove
subject reduction and progress, so that well-typed systems never violate
the prescribed constraints. Therefore, partial session types support the
development of systems by incremental assembling of components.

Keywords: Multiparty session types, process algebras, open systems.

1 Introduction

(Multiparty) session types (MPST) are a well-established theoretical and prac-
tical framework for the specification of the interactions between components of
a distributed systems [15,16,12,17,10,27]. The gist of this approach is to first
describe the system’s overall behaviour by means of a global type, from which
a local specification (local type) for each component can be derived. The sys-
tem will behave according to the global type if each component respects its local
type, which can be ensured by means of, e.g., static type checking [25,18]. There-
fore, session types support a top-down style of coding: first the designer specifies
the behaviour from a global perspective, then the programmers are given the
specifications for their modules. On the other hand, these session types do not
fit well bottom-up programming models, where systems are built incrementally
by composing existing reusable components, possibly with dynamic bindings. In
these situations, components could offer “contracts” in the form of, e.g., session
types; then, when these components are connected together, we would like to
derive the contract for the resulting system from components’ ones. The system
becomes a new component which can be used in other assemblies, and so on.

To this end, we need to infer the type for an open system (i.e., where some
parts may be still missing) using the types of the known components, in a com-
positional way and without knowing any global type. This is challenging. As an

? Work supported by the Italian MIUR project PRIN 2017FTXR7S IT MATTERS
(Methods and Tools for Trustworthy Smart Systems).

2 C. Stolze, M. Miculan, P. Di Gianantonio

example, let us consider a protocol from [10] with three participants: a server s,
an authorization server a and some client c. First, s sends to c either a request
to login, or to cancel. In the first case, c sends a password to a, and a sends a
boolean to s (telling whether c is authorized). In the second case, c tells a to
quit. Using the syntax of [10], the two server processes have the following types:

Ss := c⊕
{

login.a&auth(Bool),
cancel

}
Sa := c&

{
passwd(Str).s⊕auth(Bool),
quit

}
Let us suppose that we have implementations a and s for Sa, Ss. To prevent
miscommunications, we would like to verify that these two processes work well
together; e.g., we have to ensure that a can send the message auth(Bool) to s iff
s is waiting for it. This corresponds to see these two processes as a single system
a|s, and to check that a|s is well-typed without knowing the behaviour of clients;
more precisely, we have to figure out a session type for a|s from Sa and Ss. This
is difficult, because the link that propagates the choice made by s to a is the
missing client c, so we have to “guess” its role without knowing it.

In this paper, we address this problem by introducing partial sessions and
partial (multiparty) session types. Partial session types generalise global types
with the possibility to type also partial (or open) sessions, i.e., where some
participant may be missing. The key difference is that while a global type is
a complete, “platonistic” description of the protocol, partial session types rep-
resent the subjective views from participants’ perspectives. We can merge two
sessions with the same name but from two different “point of views”, whenever
their types are compatible; in this case, we can compute the new, unified, session
type from those of the components. In this way, we can guarantee important
properties (e.g., absence of deadlocks) about partial session without knowing all
participants beforehand, and without a complete global type. In fact, the distinc-
tion between local and global types vanishes: local types correspond to partial
session types for sessions with a single participant, and global types correspond
to finalized partial session types, i.e., in which no participant is missing.

Defining “compatibility” and how to merge partial session types is technically
challenging. Intuitively, the semantics of a partial session type is the set of all
possible execution traces (which depend on internal and external choices). We
provide a merging algorithm computing a type covering all the possible synchro-
nizations of these traces. Incompatible types, due to, e.g., miscommunications
or deadlocks, are detected when no synchronization is possible. Also the notion
of progress has to be revisited, to accommodate the case when a partial session
cannot progress not due to a deadlock, but due to some missing participant.

The rest of the paper is organized as follows. In Section 2 we introduce a
formal calculus for processes communicating over multiparty sessions. Partial
session types are presented in Section 3, and the type system is in Section 4.
Central to this type system is the merging algorithm, which we describe in Sec-
tion 5. Subject reduction and progress are given in Section 6. Finally, comparison
with related work are in Section 7, and conclusions are in Section 8.

A prototype implementation of the merging algorithm can be found at https:
//github.com/cstolze/partial-session-types-prototype.

https://github.com/cstolze/partial-session-types-prototype
https://github.com/cstolze/partial-session-types-prototype

Composable Partial Multiparty Session Types 3

2 A calculus for processes over multiparty sessions

Our language for processes is inspired by [10], in turn inspired by [29]; as in
those works, we consider synchronous communications. We note p, q, p1, p

′, . . .
for participant names, belonging to some set P; p̃ for a finite non-empty set of
participants {p1, . . . , pn}. The syntax of processes is as follows:

P,Q,R ::= xpq̃ . ini.P | xpq / (P,Q) | xpq̃(y).P | xpq(y).(P ‖ Q)

| close(x) | wait(x).P | (P |x Q) | (νx)P | P +Q

The process xpq̃ . ini.P sends label ini in session x, as participant p, to q̃, and
proceeds as P . This label is received by processes of the form xqp/(Q1, Q2), which
then proceeds as Qi. The process xpq̃(y).P creates a fresh subsession handler y,
sends it to q̃, and proceeds as P . This handler is received by processes of the
form xqp(y).(Q ‖ R) which forks a process Q (dedicated to y) in parallel to the
continuation R (on x)1. We compose the processes P and Q through session x
with P |x Q. close(x) is the neutral element for |x, while wait(x).P closes session
x when all the other participants are gone. (νx)P is the standard restriction,
and P +Q is the standard non-deterministic choice.

The session name y is bound in expressions of the form (νy)P , xpq̃(y).P ,
and xpq(y).(P ‖ Q). Free names of a process P (noted fn(P)) are the set of free
names of sessions appearing in P .

In order to define the operational semantics, we first introduce the usual
notion of contextual equivalence.

Definition 2.1 (Contexts). C[] ::= | (νx)C[] | (C[] |x P) | (P |x C[])

Definition 2.2 (Equivalence ≡). The relation ≡ is the smallest equivalence
relation closed under contexts (that is, P ≡ Q ⇒ C[P] ≡ C[Q]) satisfying the
following rules (we suppose that x, y and z are different session names):

P |x Q ≡ Q |x P (P |x Q) |x R ≡ P |x (Q |x R)

P |x close(x) ≡ P ((νx)P) |z Q ≡ (νx)(P |z Q) x 6∈ fn(Q)

(νx)(νy)P ≡ (νy)(νx)P (P |x Q) |y R ≡ P |x (Q |y R) x 6∈ fn(R), y 6∈ fn(P)

We can see that processes have the structure of a commutative monoid, thus we
will use Πz

i Pi as a shorthand for P1 |z · · · |z Pn.

Definition 2.3 (Reductions for processes). The actions α for processes are
defined as:

α ::= + | x : p→ q̃ : 〈·〉 | x : p→ q̃ : &ini | τ
We may write x : γ for either x : p→ q̃ : 〈·〉 or x : p→ q̃ : &ini.

We note P
α−→ Q for a transition from P to Q under the action α. This

relation is defined by the rules in Fig. 1.

1 From a computational point of view, this “parallel input” corresponds to the pro-
gramming practice to selectively share sessions between processes. This constructor
allows us to enforce a discipline on the shared sessions in order to avoid deadlocks
between processes. Moreover, it is motivated by connections with linear logic [29,10].

4 C. Stolze, M. Miculan, P. Di Gianantonio

xpq̃(y).R |x Πx
i (xqip(y).(Pi ‖ Qi))

x:p→q̃:〈·〉−→ (νy)(R |y Πy
i Pi) |x Π

x
i Qi (send)

xpq̃ . inj .R |x Πx
i x

qip / (P1,i, P2,i)
x:p→q̃:&inj−→ R |x Πx

i Pj,i (case)

(νx)(wait(x).P)
τ−→ P if x 6∈ fn(P) (wait)

P1 + P2
+−→ Pj j ∈ {1, 2} (choice)

P
x:γ−→ Q

(νx)P
τ−→ (νx)Q

P
α−→ Q ∀γ, α 6= x : γ

(νx)P
α−→ (νx)Q

P
α−→ Q

P |x R
α−→ Q |x R

P
α−→ Q

R |x P
α−→ R |x Q

P ≡ P ′ P ′
α−→ Q′ Q′ ≡ Q

P
α−→ Q

Fig. 1. Reduction for processes (where q̃ = {q1, . . . , qn} and i ranges over 1..n).

Note that the typing rules will ensure x does not escape its scope when reducing
(νx)(wait(x).P) into P .

Example 2.1. As a running example, let us consider three participants p, q, r. p
chooses whether to send a message to r or not; this choice is communicated to
r through an intermediate participant q.

Pp := (xpq . in1.x
pr(y).wait(y).close(x)) + (xpq . in2.close(x))

Pq := xqp / (xqr . in1.close(x), xqr . in2.close(x))

Pr := xrq / (xrp(y)(close(y) ‖ close(x)), close(x))

Here is an example of execution:

Pp |x Pq |x Pr
+−→ xpq . in2.close(x) |x Pq |x Pr

x:p→q:&in2−→ xqr . in2.close(x) |x Pr
x:q→r:&in2−→ close(x)

Notice that p can start the session with just q and then wait for input from r:

Pp |x Pq
+−→ xpq . in2.close(x) |x Pq

x:p→q:&in2−→ xqr . in2.close(x)

3 Partial multiparty session types

Partial multiparty session types (or just “session types”) define the behaviour
of a partial session. Their syntax is as follows (where i ∈ {1, 2}):

G ::= p→ q̃ : &ini;G | p→ q̃ : 〈G〉;G | G⊕G | G&G | end | close | 0 | ω

The set of participant names appearing in G is denoted by fn(G).

Composable Partial Multiparty Session Types 5

Informally, p → q̃ : m;G means that the participant p sends the message m
to the participants in q̃, then the session continues with G. The message &ini
is a label, while 〈G〉 is a fresh session handler of type G. end means that the
session ends and the process survives, while close means that the session and
the process end. G1 ⊕ G2 (resp. G1 & G2) denotes an internal (resp. external)
choice. Internal choices are made by local participants of the session, contrary
to external choices; notice that, in contrast with standard practice, sending or
receiving a label &ini is unrelated from the choices done with ⊕ or &. Finally,
we add the empty type 0, which denotes no possible executions (and it is the
unit of ⊕), and the inconsistent type ω, which denotes an error in the session.

Example 3.1. Continuing our running Example 2.1, the following should be the
types of each participant.

Gp := (p→ q : &in1; p→ r : 〈end〉; close)⊕ (p→ q : &in2; close)

Gq := (p→ q : &in1; q → r : &in1; close) & (p→ q : &in2; q → r : &in2; close)

Gr := (q → r : &in1; p→ r : 〈close〉; close) & (q → r : &in2; close)

These types are actually assigned to Pp, Pq, Pr by the type system we will present
in Section 4. But moreover, we would like to be able to type also compositions of
these processes; e.g. the types of Pp |x Pq and Pq |x Pr should be the following:

Gp,q := (p→ q : &in1; q → r : &in1; p→ r : 〈end〉; close)

⊕ (p→ q : &in2; q → r : &in2; close)

Gq,r := (p→ q : &in1; q → r : &in1; p→ r : 〈close〉; close)

& (p→ q : &in2; q → r : &in2; close)

Moreover, notice that Gp,q describes also the behaviour of Pp |x Pq |x Pr. As we
will see in the next section, these types can be inferred from Gp, Gq, Gr in a
compositional way. ut

A chain of communications is a type of the form C1;C2; . . . ;Cn. Messages
m and communications C are defined as follows:

m ::= &ini | 〈G〉 C ::= p→ q̃ : m | end | close | 0 | ω | 1

The communications end, close, 0, ω are also types and they are called terminal ;
the only non-terminal communications are p → q̃ : m and 1, the latter repre-
senting any communication which is not observable from the current process. As
such, we can prefix 1 to any session type G by defining 1;G := G. We denote by
Cω the set of all communications, and by C = Cω \ {ω, 0} the set of executable
communications. We pose Gω the set of all session types, and G the set of session
types where there is no occurence of 0 and ω. By default, we will use Gω, while
G will be used to type processes in Section 4.

In the following, we denote by S, S1, . . . sets of participants, and we use the
shorthand S1] S2 for S1∩S2 = ∅. A set of participant S will be called viewpoint.

6 C. Stolze, M. Miculan, P. Di Gianantonio

Definition 3.1 (Independence relation). We define the independence of com-
munications relative to a set of participants S as the smallest symmetric relation
IS such that C IS 1 for any C, and (p → q̃ : m) IS (p′ → q̃′ : m′) whenever
({p} ∪ q̃) ∩ ({p′} ∪ q̃′)] S.

Informally, C1 IS C2 means that the common participants of C1 and C2 are not
in S. This independence is relative to the viewpoint of S, because when C1 IS C2,
the viewpoint of S cannot discriminate between C1;C2;G and C2;C1;G, as is
shown in Eq. (1) below. In fact, we can define an equivalence relation between
session types relative to S:

Definition 3.2 (Equivalence relation). For any set of participants S, we
define the relation 'S on session types as the smallest congruence verifying the
following properties:

C1;C2;G 'SC2;C1;G (if C1 IS C2) (1)

G1 & (G2 ⊕G3) 'S(G1 &G2)⊕ (G1 &G3) G& ω 'SG G& 0 'S 0

G1 & (G2 &G3) 'S(G1 &G2) &G3 G&G 'SG G1 &G2 'S G2 &G1

G1 ⊕ (G2 ⊕G3) 'S(G1 ⊕G2)⊕G3 G⊕G 'SG G⊕ 0 'S G
C; (G1 &G2) 'S(C;G1) & (C;G2) C;ω 'Sω C; 0 'S 0

C; (G1 ⊕G2) 'S(C;G1)⊕ (C;G2) G1 ⊕G2 'S G2 ⊕G1

We can see that the operations ⊕ and &, together with the constants 0 and ω,
form a unital commutative semiring. We note

⊕
{G1, . . . , Gn} for G1⊕ . . .⊕Gn,

and
˘
{G1, . . . , Gn} for G1 & . . . & Gn. In particular,

⊕
∅ = 0, and

˘
∅ = ω.

Eq. (1) allows for the “out of order” execution of independent communications.
Notice that in general G ⊕ ω 6'S ω because the behaviour of a process of type
G⊕ ω is not necessarily always inconsistent.

The fact that choices G1 ⊕ G2 or G1 & G2 are unrelated from the action of
sending a choice allows us to move these operators around without changing the
meaning. Hence, we can consider disjunctive normal forms of session types.

Definition 3.3 (Disjunctive Normal Form). A session type G is in Dis-
junctive Normal Form (DNF), if it is of the form

⊕
{
˘
A1, . . . ,

˘
An} with the

Ai being sets of chains of communications where every message 〈G′〉 is in DNF.

In DNF a type can be seen as a set of sets of traces (sequences of communica-
tions), the intuition being that a trace describes a single possible interaction of a
process. A set of traces defines a deterministic strategy followed by a single pro-
cess P , describing how P reacts for any possible choice from other processes. A
set of sets of traces describes all the possible strategies that P can follow once it
has selected all its possible internal choices. So, describing a behaviour in DNF is
like saying that a process P starts by anticipating all possible internal choices for
all possible interactions during execution. After that, P becomes deterministic
and reacts in a single possible way to communications of other processes.

The equivalence relation on types allows us to rewrite any type in a DNF.

Proposition 3.1. For any type G and set of participants S, we can compute a
G′ in DNF such that G′ 'S G.

Composable Partial Multiparty Session Types 7

4 Type system

In this section we introduce the type system for processes. A key point is that
the type of a session are relative to the participants of that session.

Definition 4.1 (Environment). A typing declaration for session x is a triple
x : 〈G | S〉 where G ∈ G and S ⊆ P. S is the set of local participants of x.

An environment Γ is a finite set of typing declarations Γ = x1 : 〈G1 |
S1〉, . . . , xn : 〈Gn | Sn〉, such that x1, . . . xn are all distinct.

The main differences between our environments and those in [10] are that ses-
sion types replace local types, and each session is endowed with a set of local
participants, in addition to its session type.

Definition 4.2 (Equivalent environments). We define ' on environments
as the smallest equivalence relation satisfying the following rule:

Γ1 ' Γ2 G1 'S G2

Γ1, x : 〈G1 | S〉 ' Γ2, x : 〈G2 | S〉

The typing judgment is P ` Γ , whose rules are shown in Fig. 2.

Rules (send), (recv), (seli), and (case) deal with communication. Differently
from most type systems (see e.g. [10]), the send and receive actions are typed
by the same global type, and not by dual types: in our approach the duality is
given by the set of participants, which is either the sender or the receiver.

Rules (close) and (wait) correspond respectively to the 1 and ⊥ rules in
linear logic, and they both assume there is no named participant, therefore the
set of inner participants in the conclusion is empty.

Rule (+) types an internal choice between two processes, but this internal
choice is not done for a single session but for the whole process, hence we need
to add ⊕ to every type. If the internal choice is irrelevant for some session x,
that is, we have x : 〈G | S〉 in the two premises, then in the conclusion we would
have x : 〈G⊕G | S〉, which is equivalent to the former. We can of course rewrite
types into equivalent ones with rule (').

Rule (ν) allows us to create a local, restricted session. To correctly type
the local session, we need to check that the its type is complete, since no other
participants will be able to join that session afterward. To this end, we introduce
the notion of finalized session type. Intuitively, a type is finalized for a given
viewpoint (i.e., a set of participants) if all participants involved in the session
are in the viewpoint, there are no occurence of ω or close (because we need to
avoid deadlocks and miscommunications), and that the end of the session is not
the end of the process (because we are within a subsession).

Definition 4.3 (Finalized session type). The judgment G ↓ S, meaning that
the session type G is finalized for the set of participants S, is defined as follows:

8 C. Stolze, M. Miculan, P. Di Gianantonio

P ` Γ, y : 〈G1 | {p}〉, x : 〈G2 | {p}〉
xpq̃(y).P ` Γ, x : 〈p→ q̃ : 〈G1〉;G2 | {p}〉

(send)

P ` Γ1, y : 〈G1 | {q}〉 Q ` Γ2, x : 〈G2 | {q}〉 q ∈ q̃
xqp(y).(P ‖ Q) ` Γ1, Γ2, x : 〈p→ q̃ : 〈G1〉;G2 | {q}〉

(recv)

P ` Γ, x : 〈G | {p}〉
xpq̃ . ini.P ` Γ, x : 〈p→ q̃ : &ini;G | {p}〉

(seli)

P ` Γ, x : 〈G1 | {q}〉 Q ` Γ, x : 〈G2 | {q}〉 q ∈ q̃
xqp / (P,Q) ` Γ, x : 〈(p→ q̃ : &in1;G1) & (p→ q̃ : &in2;G2) | {q}〉

(case)

P ` x1 : 〈G1 | S1〉, . . . , xn : 〈Gn | Sn〉 Q ` x1 : 〈G′1 | S1〉, . . . , xn : 〈G′n | Sn〉
P +Q ` x1 : 〈G1 ⊕G′1 | S1〉, . . . , xn : 〈Gn ⊕G′n | Sn〉

(+)

P ` Γ1, x : 〈G1 | S1〉 Q ` Γ2, x : 〈G2 | S2〉 S1] S2 G3 'S1]S2 G1
S1∨S2 G2

P |x Q ` Γ1, Γ2, x : 〈G3 | S1] S2〉
(|)

close(x) ` x : 〈close | ∅〉
(close)

P ` Γ
wait(x).P ` Γ, x : 〈end | {p}〉

(wait)

P ` Γ, x : 〈G | S〉 G ↓ S
(νx)P ` Γ

(ν)
P ` Γ Γ ' Γ ′

P ` Γ ′
(')

P ` Γ, x : 〈G | S1〉 S2] fn(G)

P ` Γ, x : 〈G | S1 ∪ S2〉
(extra)

Fig. 2. Type system for processes.

{p} ∪ q̃ ⊆ S G1 ↓ {p} ∪ q̃ G2 ↓ S
p→ q̃ : 〈G1〉;G2 ↓ S

G1 ↓ S G1 'S G2

G2 ↓ S end ↓ S

G1 ↓ S G2 ↓ S
G1 ⊕G2 ↓ S

G1 ↓ S G2 ↓ S
G1 &G2 ↓ S

{p} ∪ q̃ ⊆ S G ↓ S
p→ q̃ : &ini;G ↓ S 0 ↓ S

Rule (|) is one of the key novelties of this type system. This rule allows us to
connect two processes through a shared session merging their respective types.
The shared session has a merged type, computed by G1

S1∨S2 G2. The definition
of this operator is quite complex and is postponed to Section 5. For the time
being, it is enough to know that G1

S1∨S2 G2 may not be in G, e.g. when G1, G2

are not compatible. To guarantee that only valid types are used for the merged
session, we have to find some G3 ∈ G such that G3 'S1]S2

G1
S1∨S2 G2.

The (extra) rule allows us to add participants which actually do not interact
with the sessions; this is needed for the Subject Reduction.

Composable Partial Multiparty Session Types 9

Remark 4.1. Our rule for parallel composition is similar to a cut rule for linear
logic. It may be interesting to compare our rule with the cut rule for linear logic
[14], that for binary session types [29], and that for multiparty session types [10]:

` Γ,A ` ∆,A⊥
` Γ,∆

P ` Γ, x : A Q ` ∆,x : A⊥

(νx : A)(P | Q) ` Γ,∆
Pi ` Γi, xpi : Ai G � {pi : Ai}i

(νx : G)(Πx
i Pi) ` {Γi}i

Each of these rules corresponds to the applications of two rules of our system: the
rule (|) which merges partial sessions, and the rule (ν) which closes the session.
For instance, if we assume that A1, A2, and B are suitable session types, we have
the following derivation:

P ` Γ, x : 〈A1 | S1〉 Q ` ∆,x : 〈A2 | S2〉 A1
S1∨S2 A2 'S1]S2 B

P |x Q ` Γ,∆, x : 〈B | S1] S2〉 B ↓ S1] S2

(νx)(P |x Q) ` Γ,∆

In the case of a multiparty session involving n participants, we would apply (|)
n−1 times, and then the (ν) rule to close the session. This correspondence (in a
logical setting and for binary choreographies) have been previously observed in
[9], where the cut rule above is split into two rules (called (Conn) and (Scope)).

5 Merging partial session types

The central part of the type system is the merging algorithm that infers the re-
sult of interaction of two partial session types. In this section, we will define the
merge function G1

S1∨S2 G2, where G1, G2 describe the behavior of a session
from the viewpoint of the local participants found in the set S1 and S2, respec-
tively. G1

S1∨S2 G2 then describes the behaviour of the session from the unified
viewpoint S1 ∪S2. In particular, if G1 and G2 are intuitively incompatible, then
G1

S1∨S2 G2 should contain some occurrence of ω.
To merge two types, we can consider them in DNF; in this way we can re-

cursively reduce the problem to merging chains of communications. Informally,
we merge two sequences of communications by considering all possible reorder-
ings which are compatible with each other. This give us a set of all possible
merged behaviours, which we glue together using external choices (&). Thus,
two types are compatible if they can agree on at least a pair of merged se-
quences of communications, whatever their internal choices; if no such sequences
exist, we get ω as result. Extra complexity is given by the fact that a single
communication in the form p → q̃ : 〈G〉 contains a general type; therefore, the
function mcommS1,S2

(C1, C2) for merging single communications and the func-
tion G1

S1∨S2 G2 for merging session types are mutually recursive.
We also need the following helper functions:

– the partial function contS(G,C) takes a chain of communications G and a
communication C as input, and returns a type that corresponds to what
remains in G after having executed C (up to 'S)

10 C. Stolze, M. Miculan, P. Di Gianantonio

– the decidable predicate C1
S1♥S2 C2 tells us whether C1 and C2 are merge-

able (from their respective viewpoints S1, S2)
– the total function syncS1,S2

(G1, G2) takes two chains of communications G1

and G2 as input, and returns all possible tuples (C1, G
′
1, C2, G

′) such that
C1;G′1 'S1 G1, C2;G′2 'S2 G2 and C1 and C2 are mergeable

– finally, the partial function mapS1,S2
(f)(G1, G2) takes a (partial) function

f : C× C ⇀ C and two session types in DNF as arguments, and maps f on
the pair (G1, G2).

We can then define the partial function mcommS1,S2(C1, C2) and the to-
tal function G1

S1∨S2 G2. These functions are actually non-deterministic, but
G1

S1∨S2 G2 is deterministic up to '.
In order to prove termination of these functions, we define the length l of

session types; besides, we define also the height h of communications and session
types as the maximal number of nested subsessions. Formally, we have:

l(G1 &G2) := l(G1) + l(G2)
l(G1 ⊕G2) := l(G1) + l(G2)

l(C;G) := 1 + l(G)
l(G) := 1 otherwise.

h(G1 &G2) := max(h(G1), h(G2))
h(G1 ⊕G2) := max(h(G1), h(G2))

h(C;G) := max(h(C), h(G))
h(p→ q̃ : 〈G〉) := 1 + h(G)

h(C) := 0 otherwise.

5.1 Mapping merging functions over session types

Definition 5.1 (cont). The partial function contS(G,C) takes as input a chain
of communications G and a communication C, and returns some G′ in DNF
such that G 'S C;G′. It is undefined if such G′ does not exist.

Intuitively, contS(G,C) is a kind of Brzozowski derivative that tells us what
happens in G after the communication C.

Proposition 5.1. The function cont is computable, and moreover l(C;G′) =
l(G) and h(C;G′) = h(G).

Note that dom(contS(G,)) is finite, and can be computed using Eq. (1)
repeatedly.

Definition 5.2 (Function sync). Let G1, G2 be chains of communications in
DNF. Let A1 = {(C,G′) | C ∈ dom(contS(G1,)), G′ = contS(G1, C)}, and
A2 = {(C,G′) | C ∈ dom(contS(G2,)), G′ = contS(G2, C)}. We then define:

syncS1,S2
(f)(G1, G2) := {(C1, C2, G

′
1, G

′
2) | (C1, C2) 6= (1, 1), f(C1, C2) is defined,

(C1, G
′
1) ∈ A1, (C2, G

′
2) ∈ A2}.

Intuitively, syncS1,S2
(f)(G1, G2) returns a set containing all possible pairs of

communications that can be merged, as well as their continuations.
It is important to know whether a communication C1 (from the viewpoint

S1) and a communication C2 (from the viewpoint S2) can correspond to the
same communication; in this case, we say that they are mergeable. Formally,
this notion is defined by the following relation.

Composable Partial Multiparty Session Types 11

Definition 5.3 (Mergeability). We define C1
S1♥S2 C2 as follows:

{p} ∪ q̃1 ∪ q̃2 ⊆ S1 ∪ S2 ⇒ (G1
S1∨S2 G2) ↓ S1 ∪ S2

p ∈ S1 ⇒ q̃2 ⊆ q̃1 p ∈ S2 ⇒ q̃1 ⊆ q̃2 S1 ∩ q̃2 ⊆ q̃1 S2 ∩ q̃1 ⊆ q̃2
p→ q̃1 : 〈G1〉 S1♥S2 p→ q̃2 : 〈G2〉

p ∈ S1 ⇒ q̃2 ⊆ q̃1 p ∈ S2 ⇒ q̃1 ⊆ q̃2 S1 ∩ q̃2 ⊆ q̃1 S2 ∩ q̃1 ⊆ q̃2
p→ q̃1 : &ini

S1♥S2 p→ q̃2 : &ini 1 S1♥S2 1

C2
S2♥S1 C1

C1
S1♥S2 C2

({p} ∪ q̃)] S1

1 S1♥S2 p→ q̃ : m close S1♥S2 close close S1♥S2 end

The first rule deserves some explanations. In the first hypothesis, G1 and G2

describe sessions whose participants can be only in {p} ∪ q̃1 ∪ q̃2; if all these
participants are in S1 ∪ S2, then after the merge all the participants are present
and therefore the communication must be safe, because no other participant
may join later. This means that, in this case, we have to check that the merge
of G1 and G2 is finalized. The second hypothesis (and dually the third one)
corresponds to the fact that in the (send) rule of Fig. 2, the sender specifies
all receiving participants, while in (recv) a receiver may not know about other
receivers; therefore, if p→ q̃1 : 〈G1〉 describes the communication from the point
of view of the sender (i.e., p ∈ S1), then q̃2 is a set of receivers only, and must
be contained in q̃1. The fourth (and dually the fifth) hypothesis means that if a
participant which is known to a process (i.e., in S1) appears as receiver for other
process (i.e., in q̃2), then it must appear as a received also by the first process.

Proposition 5.2. C1
S1♥S2 C2 is decidable.

Definition 5.4 (Function map). Let S1, S2 be two sets of participants, two
types G1, G2 ∈ C and a (partial) function f : C× C⇀ C such that

– G1 and G2 are in DNF
– for any C1, C2, we have that f(C1, C2) is a terminal communication iff it is

defined and both C1 and C2 are terminal
– if f(C1, C2) is defined, then either both C1 and C2 are terminal, or none of

them are.

Then, mapS1,S2
(f)(G1, G2) is defined recursively over G1, G2 as follows:

– First cases:

mapS1,S2
(f)(G1 ⊕G2, G3) := mapS1,S2

(f)(G1, G3)⊕mapS1,S2
(f)(G2, G3)

mapS1,S2
(f)(G1, G2 ⊕G3) := mapS1,S2

(f)(G1, G2)⊕mapS1,S2
(f)(G1, G3)

– If neither of the cases above apply, then we have:

mapS1,S2
(f)(G1 &G2, G3) := mapS1,S2

(f)(G1, G3) & mapS1,S2
(f)(G2, G3)

mapS1,S2
(f)(G1, G2 &G3) := mapS1,S2

(f)(G1, G2) & mapS1,S2
(f)(G1, G3)

12 C. Stolze, M. Miculan, P. Di Gianantonio

– If G1, G2 are both chains of communications and at least one of them is not
a terminal communication, we pose B := syncS1,S2

(f)(G1, G2) and we have:
• If G1 or G2 ends with 0, mapS1,S2

(f)(G1, G2) := 0.
• If G1 or G2 ends with ω, or if B = ∅, then mapS1,S2

(f)(G1, G2) := ω.
• Otherwise:

mapS1,S2
(f)(G1, G2) :=

˘
{f(C1, C2);mapS1,S2

(f)(G′1, G
′
2) |

(C1, C2, G
′
1, G

′
2) ∈ B}

– If G1 and G2 are both terminal communications, then:

mapS1,S2
(f)(G1, G2) :=


0 if G1 or G2 is 0

f(G1, G2) if f(G1, G2) is defined

ω otherwise.

The two conditions on f guarantee that mapS1,S2
(f)(G1, G2) is well-defined in

the last two cases, when f is applied to G1, G2 or to the chains C1, C2.

Proposition 5.3. Termination of map is ensured by induction on l(G1)+l(G2).

Note that, when we computing mapS1,S2
(f)(G1, G2), every application of f is of

the form fS1,S2(C1, C2), where h(C1) + h(C2) 6 h(G1) + h(G2).

5.2 Merging communications and session types

We now define the partial function mcommS1,S2
(C1, C2) which merges compati-

ble communications C1 (from the viewpoint S1) and C2 (from the viewpoint S2)
and returns, if possible, the new communication from the merged viewpoints
S1 ∪ S2. We also define by mutual recursion the merging function for session
types, which is just a shorthand for map applied to mcomm:

G1
S1∨S2 G2 := mapS1,S2

(mcommS1,S2)(G1, G2)

We suppose that G1 and G2 are in DNFs, but it can be applied to any session
types by rewriting them in DNF.

Definition 5.5 (Function mcomm). If C1
S1♥S2 C2, then:

mcommS1,S2
(p→ q̃ : &ini, p→ q̃′ : &ini) := p→ (q̃ ∪ q̃′) : &ini

mcommS1,S2(p→ q̃ : 〈G1〉, p→ q̃′ : 〈G2〉) := p→ (q̃ ∪ q̃′) : 〈G1
S1∨S2 G2〉

mcommS1,S2(1, C) := C

mcommS1,S2(C, 1) := C

mcommS1,S2(C, close) := C

mcommS1,S2(close, C) := C

Otherwise, mcommS1,S2
(C1, C2) is undefined.

Proposition 5.4. Termination is ensured by induction on h(C1) + h(C2).

Composable Partial Multiparty Session Types 13

Example 5.1. Continuing Example 3.1, let us recall the types of participants p, r:

Gp := G′p ⊕G′′p Gr := G′r &G′r

G′p := p→ q : &in1; p→ r : 〈end〉; close G′′p := p→ q : &in2; close

G′r := q → r : &in1; p→ r : 〈close〉; close G′′r := q → r : &in2; close

We have that:

dom(cont{p}(G
′
p)) = p→ q : &in1 dom(cont{p}(G

′′
p)) = p→ q : &in2

dom(cont{r}(G
′
r)) = q → r : &in1 dom(cont{r}(G

′′
r)) = q → r : &in2

As a consequence, we have for instance that: sync{p},{q}(G1, G
′
1) = {(p → q :

&in1, 1, (p→ r : 〈end〉; close), G′1), (1, q → r : &in1, G1, (p→ r : 〈close〉; close))}.
We have that:

G′p
{p}∨{r} G′r = (p→ q : &in1; q → r : &in1; p→ r : 〈end〉; close)&

(q → r : &in1; p→ q : &in1; p→ r : 〈end〉; close)

G′p
{p}∨{r} G′′r = (p→ q : &in1; q → r : &in2;ω) & (q → r : &in2; p→ q : &in1;ω)

G′′p
{p}∨{r} G′r = (p→ q : &in2; q → r : &in1;ω) & (q → r : &in1; p→ q : &in2;ω)

G′′p
{p}∨{r} G′′r = (p→ q : &in2; q → r : &in2; close)&

(q → r : &in2; p→ q : &in2; close)

and finally

Gp
{p}∨{r} Gr = ((G′p

{p}∨{r} G′r) & (G′p
{p}∨{r} G′′r))⊕

((G′′p
{p}∨{r} G′r) & (G′′p

{p}∨{r} G′′r))

'{p,r} (p→ q : &in1; q → r : &in1; p→ r : 〈end〉; close)⊕
(p→ q : &in2; q → r : &in2; close)

6 Subject reduction and Progress

In this section we state two main properties of session types, subject reduction
and progress, which guarantee that “well-typed systems cannot go wrong”. To
this end, we first define a reduction semantics for partial session types.

Definition 6.1 (Reductions for session types). Actions γ for session types
are defined as

γ ::= + | p→ q̃ : 〈·〉 | p→ q̃ : &ini

We write G1
γ−→S G2 for a transition from G1 to G2 from the viewpoint of

S under the action γ. This relation is defined as follows:

G1 ⊕G2
+−→S Gi p→ q̃ : 〈G1〉;G2

p→q̃:〈·〉−→ S G2

p→ q̃ : &ini;G
p→q̃:&ini−→ S G

G1
γ−→S G

′ G1 'S G2

G2
γ−→S G

′

14 C. Stolze, M. Miculan, P. Di Gianantonio

Note that transitions are not deterministic, in particular G 'S G⊕G, there-

fore we always have G
+−→ G, which is useful in case we are reducing an internal

choice which is irrelevant for G.

Definition 6.2 (Reduction for environments). Reductions for environments
are labelled by actions for processes α, and are defined as follows:

· α−→ · Γ
τ−→ Γ

G1
+−→S G2 Γ1

+−→ Γ2

x : 〈G1 | S〉, Γ1
+−→ x : 〈G2 | S〉, Γ2

G1
γ−→S G2

x : 〈G1 | S〉, Γ
x:γ−→ x : 〈G2 | S〉, Γ

Γ1
y:γ−→ Γ2 x 6= y

x : 〈G | S〉, Γ1
y:γ−→ x : 〈G | S〉, Γ2

The type system enjoys the following properties:

Theorem 6.1 (Subject equivalence). If P ` Γ and P ≡ Q, then Q ` Γ .

From now on, we can consider processes equal modulo ≡.

Theorem 6.2 (Subject reduction). If P1 ` Γ1 and P1
α−→ P2, then for

some Γ2, we have P2 ` Γ2 and Γ1
α−→ Γ2.

Remark 6.1. In earlier work about MPST, usually subject reduction requires
some consistency condition over the typing environment Γ (see, e.g., [27]). In
our development, this condition is not explicitly needed because the type rules
for processes ensure that environments are consistent; hence, the derivability of
P1 ` Γ1 implies that no session in Γ1 has the type ω.

Progress In usual session types, the progress property means that well-typed
systems can always proceed, and in particular they are deadlock-free. In our
case, well-typed systems can still contain processes which cannot proceed not
due to a deadlock or miscommunication but due to some missing participant.

Example 6.1. Let us consider P = xpq . &in1.close(x). This process is typable
(P ` x : 〈p → q : &in1; close | {p}〉), yet it is stuck. It can be completed into a
redex P |x Q, with Q = xqp / (Q1, Q2). In fact, P can be seen as the restriction
of P |x Q on session x with participants in {p}. Hence, P is preempted by x and
so it can be considered a correct process, waiting for the missing participant.

Therefore, in order to define the progress property for our system, we need to
define the restriction of a process to a given set of local participants.

Definition 6.3 (Restriction). We define the restriction of a term P on ses-
sion x with participants in S (noted P �S x) as follows:

xpq̃(y).P �S x = close(x) if p 6∈ S xpq(y).(P ‖ Q) �S x = close(x) if p 6∈ S
xpq̃ . ini.P �S x = close(x) if p 6∈ S xpq / (P,Q) �S x = close(x) if p 6∈ S

P |x Q �S x = (P �S x) |x (Q �S x) P �S x = P otherwise

Composable Partial Multiparty Session Types 15

Definition 6.4 (Preemption). We say that a session x with type G ∈ G and
local participants S preempts P (noted x : 〈G | S〉 �g P) when one of these
condition occurs:

– x : 〈p → q̃ : 〈G1〉;G2 | S〉 �g ((xpq̃(y).R |x Πx
i (xqip(y).(Pi ‖ Qi))) �S x) |x

P if G2 'S C where C is terminal, or x : 〈G2 | S − {p, q̃}〉 �g P
– x : 〈p→ q̃ : &ini;G | S〉 �g (xpq̃ . ini.R |x Πx

j x
qjp / (P1,j , P2,j) �S x) |x P if

G2 'S C where C is terminal, or x : 〈G | S − {p, q̃}〉 �g P
– x : 〈close | S〉 �g close(x)
– x : 〈end | S〉 �g wait(x).P
– x : 〈G1 ⊕G2 | S〉 �g U if x : 〈G1 | S〉 �g P or x : 〈G2 | S〉 �g P
– x : 〈G1 &G2 | S〉 �g P if x : 〈G1 | S〉 �g P and x : 〈G2 | S〉 �g P
– x : 〈G | S〉 �g P if x : 〈G | S〉 �g P

′ and P ≡ P ′

Definition 6.5 (Contextual preemption). We define x : 〈G | S〉 �c P if
for some C[], P ′, we have that P ≡ C[P ′], x 6∈ fn(C[]), and x : 〈G | S〉 �g P

′.

Intuitively, x : 〈G | S〉 �c P means that every local participant in S is
ready to trigger its respective communication described in G. As a consequence,
there is no deadlock for x: if all the concerned participants are present there is
a redex, otherwise we are blocked due to the absence of some sender or receiver.
The following lemma states that if a session is finalized and preempted, then the
process (with the session restricted) contains a redex.

Lemma 6.1. 1. If G ↓ S and x : 〈G | S〉 �g P , then (νx)P has a redex.
2. If G ↓ S and x : 〈G | S〉 �c P , then (νx)P has a redex.

Theorem 6.3 (Progress). If P ` Γ then there is a redex in P , or for some
x : 〈G | S〉 ∈ Γ we have x : 〈G | S〉 �c P .

7 Related work

The problem of composing session types has been faced in several related work.
Compositional choreographies are discussed in [24], with the same motivations
as ours, but from a different perspective. The authors manage to compose chore-
ographies using global types, but the global type of shared channels has to be
the same. This is in contrast with our approach, where the processes may have
different session types that we merge during the composition. Moreover, also
their typing judgments use sets of participants (there called roles); more pre-
cisely, the types for channels keep track of the “active” role, the set of all roles in
the global type, and the roles actually implemented by the choreography under
typing. On the other hand, we do not need to specify neither the complete set
of participants nor the “active” role, in typing sessions.

Synthesis of choreography from local types has been studied also in [21], but
with no notion of “partial types” and no distinction between internal/external
choice. Graphical representations of choreographies (as communicating finite-
state machines) and global types have been used in [22], where an algorithm for
constructing a global graph from asynchronous interactions is given.

16 C. Stolze, M. Miculan, P. Di Gianantonio

An interesting approach based on gateways has been investigated in [5,2,4,3]:
two independent global types G1 and G2 with different participants can be com-
posed through participant h in G1 and k in G2 where h and k relay the message
they receive to each other. Therefore, in this approach the two session types
G1, G2 are connected by the gateway but not really merged, as in our approach.
Finally, [27] do not use global types altogether: behaviours of systems are repre-
sented by sets of local types, over which no consistency conditions are required,
and behavioural properties can be verified using model checking techniques.

A problem similar to ours is considered in [8], where the authors introduce a
type system for the Conversation Calculus, a model for service-oriented comput-
ing. Conversation types of parallel processes can be merged like in our approach,
but the underlying computational model is quite different.

Semantics of concurrent processes can be given using Mazurkiewicz trace
languages [26]. Semantics can also be defined using event structures, as in [11],
where they are used for defining equivalent semantics for processes and their
global types. Interestingly, the semantics for global types proposed in [11] is
similar to the representation of Mazurkiewicz trace languages as event structures
given in [26]. Mazurkiewicz trace languages have been also used to characterize
testing preorders on multiparty scenarios [13]. A denotational semantics based
on Brzozowski derivatives that corresponds to bisimilarity is given in [20].

Another semantics of processes (but for binary session types) that records
exchanged informations is given in [1]. This semantics is similar to the relation-
based model of linear logic [6], and not based on traces. It would interesting
to investigate if this alternative semantics can be extended to MPST and to
interpret the merge operation. The relationship between category theory and
session types has been investigated also in [28,19].

8 Conclusions

In this paper, we have introduced partial sessions and partial (multiparty) ses-
sion types, extending global session types with the possibility to type also sessions
with missing participants. Sessions with the same name but observed by different
participants can be merged if their types are compatible; in this case, the type for
the unified session can be derived compositionally from the types of components.
To this end we have provided a merging algorithm, which allows us to detect
incompatible types, due to miscommunications or deadlocks, as early as possible;
this differs from usual session type systems which delay all the checks to when
the system is completed (i.e., at the restriction rule). Therefore, in this theory
the distinction between local and global types vanishes. We have also generalised
the notion of progress to accommodate the case when a partial session cannot
progress not due to a deadlock, but to some missing participant.

Future work. An interesting application of partial session types would be in the
verification of composition of components, like e.g. containers a la Docker; to
this end, we can think of defining a typing discipline similar to the one presented
in this paper, but tailored for a formal models of containers, like that in [7].

Composable Partial Multiparty Session Types 17

We claim that for the type system presented in this paper both type check-
ing and type inference are decidable. The idea is that, in order to be typable,
the structure of a process has to match the structure of the type(s), up-to type
equivalence; hence, the typing derivation is bounded by the complexity of pro-
cess terms. At worst, this bound is exponential, as in the application of type
equivalence rule we have to explore a possibly exponential space of equivalent
types; however, this limit could be improved by some algorithmic machinery
concerning the normal form of types, which we leave to future work.

The current merging algorithm returns types that may contain many equiv-
alent subterms; a future work could be to define shorter and more efficient rep-
resentations. Another interesting aspect of this algorithm is that it is defined
by two functions (map and mcomm), which can be updated separately in future
variations; in particular, adding recursion only requires to update the function
map, while adding new kinds of communication, or changing how communica-
tions are merged, only requires to update the function mcomm. The correctness
of this algorithm can be proved with respect to a categorical semantics for session
types based on traces, which we leave to the extended version of this work.

In this paper we have considered a calculus with synchronous multicast, along
the lines of [29,10] and others. However, it would be interesting to extend the
definitions and results of this paper to an asynchronous version of the calculus.
This is not immediate, as it requires non-trivial changes in the typing systems
and especially in the (already quite complex) merging operation.

Following the Liskov substitution principle, we could define a subtyping re-
lation by seeing & and ⊕ as the meet and join operator of a lattice, respectively.
However, a semantical understanding of this subtyping relation is not clear yet.

One intriguing possible extension would be to add some form of encapsula-
tion. For instance, if we have the type p→ q : m1; q → r : m2; p→ r : m3; close
from the viewpoint of {q, r}, then we could be tempted to “erase” the communi-
cation q → r : m2, since this communication is purely internal, but this erasure
would not be compatible with equivalence:

p→ q : m1; q → r : m2; p→ r : m3; close 6'{q,r} p→ q : m3; q → r : m2;

p→ r : m1; close

but p→ q : m1; p→ r : m3; close '{q,r} p→ q : m3; p→ r : m1; close

How to add a form of encapsulation to our type system is an open question.
Finally, to guarantee the correctness of most complex proofs and definitions

of this paper, it would be useful to formalise them in a proof assistant, like Coq.

Acknowledgments We are grateful to Mariangiola Dezani-Ciancaglini, Marco
Peressotti and the anonymous reviewers for their useful remarks on the prelim-
inar version of this paper.

References

1. Atkey, R.: Observed communication semantics for classical processes. In: Yang, H.
(ed.) Programming Languages and Systems. pp. 56–82. Springer (2017)

18 C. Stolze, M. Miculan, P. Di Gianantonio

2. Barbanera, F., Dezani-Ciancaglini, M.: Open multiparty sessions. In: Proc. ICE.
EPTCS, vol. 304, pp. 77–96 (2019)

3. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition and
decomposition of multiparty sessions. J. Log. Algebraic Methods Program. 119
(2021)

4. Barbanera, F., Lanese, I., Tuosto, E.: Composing communicating systems, syn-
chronously. In: ISoLA. Lecture Notes in Computer Science, vol. 12476, pp. 39–59.
Springer (2020)

5. Barbanera, F., de’ Liguoro, U., Hennicker, R.: Global types for open systems. In:
Proc. ICE. EPTCS, vol. 279, pp. 4–20 (2018)

6. Barr, M.: *-autonomous categories and linear logic. Mathe-
matical Structures in Computer Science 1(2), 159–178 (1991).
https://doi.org/10.1017/S0960129500001274

7. Burco, F., Miculan, M., Peressotti, M.: Towards a formal model for composable
container systems. In: Hung, C., Cerný, T., Shin, D., Bechini, A. (eds.) SAC ’20:
The 35th ACM/SIGAPP Symposium on Applied Computing. pp. 173–175. ACM
(2020). https://doi.org/10.1145/3341105.3374121

8. Caires, L., Vieira, H.T.: Conversation types. Theoretical Computer Science 411(51-
52), 4399–4440 (2010)

9. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distributed
Comput. 31(1), 51–67 (2018)

10. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. Acta Informatica 54(3), 243–269 (2017)

11. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Event structure semantics for
multiparty sessions. In: Models, Languages, and Tools for Concurrent and Dis-
tributed Programming, pp. 340–363. Springer (2019)

12. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

13. De Nicola, R., Melgratti, H.: Multiparty testing preorders. In: Trustworthy Global
Computing. pp. 16–31. Springer (2015)

14. Girard, J.Y.: Linear logic. Theoretical computer science 50(1), 1–101 (1987)

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disci-
pline for structured communication-based programming. In: Hankin, C. (ed.) Proc.
ESOP’98. Lecture Notes in Computer Science, vol. 1381, pp. 122–138. Springer
(1998). https://doi.org/10.1007/BFb0053567

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proc. POPL 2008. pp. 273–284. ACM (2008).
https://doi.org/10.1145/1328438.1328472

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

18. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: Pro-
ceedings of the 11th ACM SIGPLAN Workshop on Generic Programming. pp.
13–22 (2015)

19. Keizer, A.C., Basold, H., Pérez, J.A.: Session coalgebras: A coalgebraic view on
session types and communication protocols. In: Yoshida, N. (ed.) Programming
Languages and Systems - 30th European Symposium on Programming, ESOP
2021, Proceedings. Lecture Notes in Computer Science, vol. 12648, pp. 375–403.
Springer (2021). https://doi.org/10.1007/978-3-030-72019-3 14

https://doi.org/10.1017/S0960129500001274
https://doi.org/10.1145/3341105.3374121
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-030-72019-3_14

Composable Partial Multiparty Session Types 19

20. Kokke, W., Montesi, F., Peressotti, M.: Better late than never: A fully-abstract
semantics for classical processes. Proc. ACM Program. Lang. 3(POPL) (Jan 2019).
https://doi.org/10.1145/3290337

21. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
CONCUR. Lecture Notes in Computer Science, vol. 7454, pp. 225–239. Springer
(2012)

22. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL. pp. 221–232. ACM (2015)

23. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux journal 2014(239), 2 (2014)

24. Montesi, F., Yoshida, N.: Compositional choreographies. In: Proc. CONCUR. Lec-
ture Notes in Computer Science, vol. 8052, pp. 425–439. Springer (2013)

25. Neubauer, M., Thiemann, P.: An implementation of session types. In: International
Symposium on Practical Aspects of Declarative Languages. pp. 56–70. Springer
(2004)

26. Nielsen, M., Winskel, G.: Models for concurrency. In: Proc. Mathematical Foun-
dations of Computer Science. pp. 43–46 (1991)

27. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proceed-
ings of the ACM on Programming Languages 3(POPL), 1–29 (2019)

28. Toninho, B., Yoshida, N.: Polymorphic session processes as morphisms. In: Alvim,
M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and
Privacy - Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th
Birthday. Lecture Notes in Computer Science, vol. 11760, pp. 101–117. Springer
(2019). https://doi.org/10.1007/978-3-030-31175-9 7

29. Wadler, P.: Propositions as sessions. Journal of Functional Programming 24(2-3),
384–418 (2014)

https://doi.org/10.1145/3290337
https://doi.org/10.1007/978-3-030-31175-9_7

	Composable Partial Multiparty Session Types

