Finanziato Ministero . .
dall'Unione europea dell’Universita Italiadomani
NextGenerationEU &3> e della Ricerca BN RAT R enza

Attribute-based Communication over Pub/Sub:

Transactional Coordination for Smart Systems

SWOPS WP1 - Core Programming Languages

M. Comini, L. Gemolotto and M. Miculan marino.miculan@uniud.it
Venice, 26/06/2025

Second Software and Platform Security Workshop

@ SISSI@S] Event-driven programming of smart systems

Condition
Environment
RULE
(sensors) (actuators)
= input @ output z
: 2| ——— ¢
L =}
° O b
State-based ECA rules: "“on movement if alarm = "active" then siren < on”

variables can be internal, or connected to sensors or to actuators

I M. Miculan SERICS - SPOKE 6

fiR SeRiCs

m Centralized

m No intra-nodes communication @

m Cloud-dependent \ \\ Internet

m Big security concerns

—o—0 A

m Very popular as Trigger-Action ,

v
Platforms (TAP): A 2 @& @

I M. Miculan SERICS - SPOKE 6

@ SERICS Next (ECA) loT architecture: edge computing

Fully distributed

& E &
Communication between nodes

Cloud-agnostic Internet
Identity decoupled, for scalability

] —o— 1 —a

Collective Adaptive Systems

I M. Miculan SERICS - SPOKE 6

f‘ﬁ SERlCS Programming model for edge CAS?

We need programming abstractions and models for edge computing with:

m peer-to-peer, decentralised control
m identity decoupling, for scalability (no point-to-point communication)
= open and flexible (nodes can join and leave dynamically)

m which integrate neatly within the ECA paradigm

Attribute-based Updates (AbU):
ECA rules + Attribute-based Communication

I M. Miculan SERICS - SPOKE 6

@ SISS@SY Attribute-based Memory Updates [MM, M. Pasqua, ICTAC 2021]

Nodes behavior: defined by ECA rules like “on z for all I : x < €"

Nodes state: local memory Interaction: remote updates

Attribute-based interaction: on all nodes satisfying 1, update the remote x with e

I M. Miculan SERICS - SPOKE 6

7N SERlCS AbU syntax

)
K

m An AbU system S is an AbU node R, (X, ©) or the parallel of systems S; || S
= Each node is equipped with a list R of AbU rules and an invariant ¢ specifying
admissible states

event default forall @ ------------- X + ¢ (remote)
‘ ‘ task
||
evt > act; , cnd:acty assignments
| | |
list of resources \ L x + ¢ (local)

“on all nodes with (remote) x greater than the current (local) x”
forall: @(x < X): X+ x,y+ y+1

“update the (remote) x with the current (local) x, and increment remote y”

I M. Miculan SERICS - SPOKE 6

@ SERICS IR ENE Ry ETTe [M. Pasqua, MM, TCS 2023]

LTS semantics, with judgments:
R,1(X,0) % R, (X, 0)

A label o can be:
m an input label, upd » T
m an execution label, upd > T

m a discovery label, T

I M. Miculan SERICS - SPOKE 6

7 SERICS AbU operational semantics: rules

upd € © Upd:(Xl,Ul)...(Xk,Uk) Z/IE[’Ul/Xl...Uk/Xk]
YE. X={x|i€[l.k]AS(x) # X (x:)}
"= (0\ {upd}) U LocaIUpds(R X,¥) T = ExtTasks(R, X,)

R, (%, ®> LN R, (X, 0")
upd € © upd = (x1,v1) ... (XK, vk) Z[v1/x1...08/xk]) . O =0O\ {upd}

(ExEC)

(ExEC-F)
R,1(2,0) Z5% R, (%, 0)
vg,..., 0 €V Y = Z[vl/xl...vk/xk] X ={x1,..., X}
(InpuT) © = © U LocalUpds(R, X, Z’) = ExtTasks(R, X,Y’)
R, (%2,0) >L R, (E’,@’)
(= {[act]¥ | i € [1.n] .task; = p:act AL =} O =0U0O"
Disc)
R, L<E, @> taskj ...tasky, R, L(E, ®,>
S %S S, 5s, s; LS s, %9,
(STEPL) = ae{>T,»T} (STEPR) = ac{>T,»T}
SillS2 =S Sh Sil|S2 =S Sh

I M. Miculan SERICS - SPOKE 6

@ SERICS AbU execution model

discovery

o (Exec)
O Ot 3 i —0_©
o (@)

___ Stable
(WAVE)

© O
S~ s ©

-

w -

X 3 f

hj discovery
i 3

discovery

M. Miculan

SERICS - SPOKE 6

§§ SERlCS Example: Smart Building Alarm

Four nodes: S = W(Zl,®> “ W<22,®> || W<Z3,®> || P<Z4,®>

Nodes state: Triggekedetules:

o

Ve 1) Ve 3) ala%&M@@:@ﬂﬁ"%ﬂ]ﬂ% R

periiisoirehaim@nue— false

Wi i
o A docdOppen(stafatdom QrdocdOp@persresiren trugrue
/m 3\ ' ! 4\
alarmSwitch > @(alarmSwitch) : alarmOn « true
A\ n/ A\ n/ ()

alarmSwitch > ©(!alarmSwitch) : siren < false, alarmOn <« false

IR M. Miculan SERICS - SPOKE 6

AbU node

Distributed discovery { ECA rules engine }» 77777 Attribute-based memory updates
i . . s AL Col ication |
loT interfage _ ___ ﬂ Device drivers H Distribution # - - - - ommumcation fayer
Semdr I J euselsr
network
sensors/actuators > other AbU nodes

m ECA rules engine module: AbU semantics
m Device drivers module (GOBOT-based): abstraction of physical resources

m Distribution module (Memberlist-based): abstraction of send/receive and cluster
nodes join/leave

m Transactional communication (three-phase commit protocol)

IR M. Miculan SERICS - SPOKE 6

ﬁ‘ﬁ SERlCS AbU-lang Programs Compilation Cycle

AbU program

Device 1 (/) loT lib u
sub-program [AbU Compiler >Java @

qndroid
De-sugaring . 10T lib
D 2 o 1
and bewce AbU Compiler E ——————————————— >
Splitting sub-program RaspberryPi

. </) IoT lib 3
Device n AbU Compiler Go Compiler | - = ->
sub-program

Google Cloud

IR M. Miculan SERICS - SPOKE 6

u

§§ SERlCS How to port AbU to more loT systems?

m Often enough, loT systems do not use RPC/REST or similar technologies
= Nodes might not even be aware of other nodes

= Applications like robotics or smart building often rely on pub/sub middlewares,

\

N
such as :Ros, MQTT or L:::

A new architecture and implementation of AbU over pub/sub systems.

This work [Comini, Gemolotto, M., FORTE 2025]: J

TR M. Miculan SERICS - SPOKE 6

=N SERICS Node Architecture

AbU node:
ECA Rules b—» AbU executer
Three threads in parallel for each

node ojojo

m Executer for rule processing ' Aol rode Aol node
. ™ i Transacti Transacti

m 1/O Manager for handling VO Manager Manager Manager Manager

sensors and actuators L J

. Pub/Sub

= Transaction manager for Broker

global rule handling I l

Sensors Actuators

I M. Miculan SERICS - SPOKE 6

ﬁ«'z ?ﬁ‘l SERICS Transaction Manager Protocol: Desired Properties

Eventual Transaction Termination: every transaction will eventually be committed.
Absence of Deadlocks: the Executer thread will always be released from its wait on T.

Absence of Race Conditions: at any point, there cannot be two nodes reaching the
commit phase at the same time, on different transactions.

I M. Miculan SERICS - SPOKE 6

ﬂ?"

SERlCS Assumptions on the system

Reliability: the middleware provides mechanism to ensure that messages are received.

Scheduling Fairness: each node implements a fair scheduler such that no thread can be
infinitely often enabled and never executed.

FIFO ordering: given two messages m; and my sent in this order by the same node,
each node will receive them in the same order.

Uniqueness of message identifiers: transaction identifiers are generated locally on each

node by combining a local counter t with the node’s unique identifier id,
denoted as Id(t,id).

Many pub/sub platforms, such as the DDS implementations in use by ROS, are able to
guarantee these.

I M. Miculan SERICS - SPOKE 6

received
{COMMIT, transid}

received
{PRECOMMIT , transld, n}
AND transld >= tid

received {OK, transld} fromf
=

received {OK|, transld} - P2

n nodes publish
{COMMIT, transid}

i M. Miculan SERICS - SPOKE 6

Zas | SERICS Proving Properties: Reachability of the commit state

Proposition (Reachability of the commit state)

For a given transaction t among n participants, if no faults occur, at least one node will
eventually be able to count n “OK” messages.

y

Theorem (Eventual commit)

Regardless of the conflicts, any transaction will eventually commit.

I M. Miculan SERICS - SPOKE 6

f‘li ?ﬁl SERlCS Proving Properties: Deadlocks and Race Conditions

Corollary

The Executer thread will never indefinitely wait for T to become empty (i.e., loop
indefinitely in lines 2-3 of algorithm 1), thus deadlocks are avoided.

Corollary

At any time, all automata which are in state pa (local commit) have the same transld.

y

fRRnnnnnnnnnnnnnn M. Miculan SERICS - SPOKE 6

ﬁ SERlCS Pseudocode

Function executer (7,0,%):

while true do
while T # NIL do
; // wait for potentially
initiated transaction to
end

U + selectUpdate(O);
// select next update from
©; blocks if © =10
lock(T); lock(®©);
© + 0\ {U}; // remove it
from pool
(X, ') « applyUpdate(U,X);
if ¥’ = then
Y3
O«
© UlocalUpdates(R, X, X);
T+
externalUpdates(R, X,X¥);

| unlock(©); unlock(T);
Algorithm 1: Pseudocode for the AbU

executer.

fRRnnnnnnnnnnnmn M. Miculan SERICS - SPOKE 6

Function inputManager(T,©,X):
while true do

while T # NIL do
. // wait for
potentially initiated
transaction to end

U < receiveSensors();
lock(T); lock(®©);
(X,X) «+ applyUpdate(U, ¥);
O«

© U localUpdates(R, X, X);
T +

externalUpdates (R, X, X¥);

| unlock(®); unlock(T);

A]gorithm 2: Pseudocode for the AbU
input manager.

ﬁ“ SERICS Pseudocode (cont.)

Algorithm 1 Pseudocode for the AbU Transaction Manager

1: function TRANSACTIONMANAGER(T, ©, X, nodeld)

2 isInitiator « false

3 tid < NIL; U < NIL; ITid < 0

1 while true do

50 if T # NIL and tid = NIL then

6 tid « GETTRANSID(nodeld, ITid)

T nParticipants <~ GETPARTICIPANTS

8 PUBLISH(PRECOMMIT, tid, nParticipants, T)
9: isInitiator < true

10: end if

11: msg < RECEIVEFROMTOPIC

12: if msg = (PRECOMMIT, transId,n,T') then
13: if tid = NIL then

14: tid < transld

15: counter <—n

16: U + selectValid(7",%)

17: pUBLISH(OK, tid)

18: else if transld < tid then

19: PUBLISH(ABORT, tid)

20: U ¢+ selectValid(7T",X)

21: tid < transld

22: isInitiator + false

23: pUBLISH(OK, tid)

24: end if

25: else if msg = (OK, transId) then

26: if transld = tid and not isInitiator then

35:

50:

counter < counter — 1
if counter =0 then
PUBLISH(COMMIT, tid)
end if
end if
else if msg = (COMMIT, transld) then
if transld = tid then
if isInitiator then
T < NIL
isInitiator « false
ITid + ITid + 1
else
lock(©)
0+—0uU
unlock(©)
end if
tid < NIL
end if
else if msg = (ABORT, transId) then
if transld = tid and not isInitiator then
tid < NIL
end if
end if

end while

51: end function

M. Miculan SERICS - SPOKE 6

New contributions

A fully decentralized 2PC protocol based on broadcast primitives

New implementation of AbU on ROS2

m ECA rule-based language for loT and robotics applications

Future work

Finalize implementation and testing

Relaxing the assumptions (at the expense of the properties)
m Lowering latency / Adding priorities to remote tasks

m Application of the transactional protocol to other contexts

fnnnnnnnnnnnnnnnn M. Miculan SERICS - SPOKE 6

Thanks for the attention

- M Miculan, M Pasqua, A Calculus for Attribute-based Memory Updates, Proc. ICTAC
2021 - LNCS 12819;

- M Pasqua, M Miculan, On the Security and Safety of AbU Systems, International
Conference on Software Engineering and Formal Methods, LNCS 13085, 2021.

- M Pasqua, M Miculan, Distributed Programming of Smart Systems with
Event-Condition-Action Rules, ICTCS 2022: 201-206

- M Pasqua, M Comuzzo, M Miculan, The AbU Language: loT Distributed
Programming Made Easy, IEEE Access 10: 132763-132776 (2022)

- M Pasqua, M Miculan, AbU: A calculus for distributed event-driven programming with
attribute-based interaction. TCS 958: 113841 (2023)

- M Comini, L Gemolotto, M Miculan, Attribute-Based Communication over Pub/Sub:
Transactional Coordination for Smart Systems, Proc. FORTE 2025 - LNCS 15732

- https://github.com/abu-1lang

fnnnnnnnnnnnnnnn M. Miculan SERICS - SPOKE 6

https://github.com/abu-lang

il serics

Security: protection of confidential data (noninterference)

m Security policy: L (public) and H (confidential) resources
= No flows from H to L allowed

m Bisimulation ~, that hides L-level updates

K—Rl...Rnﬁ

R]_Rn R]_Rn

Fh S

for all L-equivalent states ¥y = ¥} ... X, = X

1 1 | M. Miculan SERICS - SPOKE 6

N SERICS Behavioral equivalences

)
K

Safety: prevention of unintended interactions

m The systems S and R are known to be safe
m Is the ensemble of all nodes in S and R still safe?

m Bisimulation =y that hides the updates of S

S does not interact with, or is transparent for, R

I N . M. Miculan SERICS - SPOKE 6

fiR SeRiCs

m Weak bisimulation hiding labels not related to the requirements

m Parametric on a function h making non-observable labels a such that h(a) =<

J?al JE,O“

(6%} [¢5]
if h(a) o 2] = J, if h(a) =0 22| = J, with h(ap) = o
[e %] : [ek} :
’ ’
Security h_ hides: Safety hs hides:
m discovery labels m discovery labels
= execution labels with H resources m execution labels produced by S

I N M. Miculan SERICS - SPOKE 6

	Appendix

