
Attribute-based Communication over Pub/Sub:

Transactional Coordination for Smart Systems

SWOPS WP1 - Core Programming Languages

M. Comini, L. Gemolotto and M. Miculan

Second Software and Platform Security Workshop
Venice, 26/06/2025

marino.miculan@uniud.it

Event-driven programming of smart systems

Environment

RULE

input

Ev
en

t

Condition

output

A
ction

(sensors) (actuators)

State-based ECA rules: “on movement if alarm = "active" then siren ← on”

variables can be internal, or connected to sensors or to actuators

M. Miculan SERICS - SPOKE 61 23

Actual smart (ECA) devices setting

Centralized

No intra-nodes communication

Cloud-dependent

Big security concerns

Very popular as Trigger-Action
Platforms (TAP):

Internet

M. Miculan SERICS - SPOKE 62 23

Next (ECA) IoT architecture: edge computing

Fully distributed

Communication between nodes

Cloud-agnostic

Identity decoupled, for scalability

Collective Adaptive Systems

Internet

M. Miculan SERICS - SPOKE 63 23

Programming model for edge CAS?

We need programming abstractions and models for edge computing with:
peer-to-peer, decentralised control

identity decoupling, for scalability (no point-to-point communication)

open and flexible (nodes can join and leave dynamically)

which integrate neatly within the ECA paradigm

Attribute-based Updates (AbU):
ECA rules + Attribute-based Communication

M. Miculan SERICS - SPOKE 64 23

Attribute-based Memory Updates [MM, M. Pasqua, ICTAC 2021]

Nodes behavior: defined by ECA rules like “on z for all Π : x ← e”

3 2

1

Nodes state: local memory Interaction: remote updates
1

2

Interaction: remote updates
1

2

Attribute-based interaction: on all nodes satisfying Π, update the remote x with e

M. Miculan SERICS - SPOKE 65 23

AbU syntax

An AbU system S is an AbU node R, ι⟨Σ,Θ⟩ or the parallel of systems S1 ∥S2
Each node is equipped with a list R of AbU rules and an invariant ι specifying
admissible states

evt ⋗ act1 , cnd : act2
task

event

list of resources

assignments

x ← ε (local)

forall @ x ← ε (remote)default

for all: @(x < x̄) : x̄ ← x , ȳ ← ȳ + 1
“on all nodes with (remote) x greater than the current (local) x”

“update the (remote) x with the current (local) x , and increment remote y ”

M. Miculan SERICS - SPOKE 66 23

AbU operational semantics [M. Pasqua, MM, TCS 2023]

LTS semantics, with judgments:

R, ι⟨Σ,Θ⟩ α−_ R, ι⟨Σ′,Θ′⟩

A label α can be:
an input label, upd ▶ T

an execution label, upd ▷ T

a discovery label, T

M. Miculan SERICS - SPOKE 67 23

AbU operational semantics: rules

(Exec)

upd ∈ Θ upd = (x1, v1) . . . (xk, vk) Σ′ = Σ[v1/x1 . . . vk/xk]
Σ′ |= ι X = {xi | i ∈ [1..k] ∧ Σ(xi) ̸= Σ′(xi)}

Θ′ = (Θ \ {upd}) ∪ LocalUpds(R,X,Σ′) T = ExtTasks(R,X,Σ′)

R, ι⟨Σ,Θ⟩ ▷T−−_ R, ι⟨Σ′,Θ′⟩

(Exec-F)
upd ∈ Θ upd = (x1, v1) . . . (xk, vk) Σ[v1/x1 . . . vk/xk] ̸|= ι Θ′ = Θ \ {upd}

R, ι⟨Σ,Θ⟩ ▷ϵ−−_ R, ι⟨Σ,Θ′⟩

(Input)

v1, . . . , vk ∈ V Σ′ = Σ[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
Θ′ = Θ ∪ LocalUpds(R,X,Σ′) T = ExtTasks(R,X,Σ′)

R, ι⟨Σ,Θ⟩ ▶T−−_ R, ι⟨Σ′,Θ′⟩

(Disc)
Θ′′ = {JactKΣ | ∃i ∈ [1..n] . taski = φ : act ∧ Σ |= φ} Θ′ = Θ ∪Θ′′

R, ι⟨Σ,Θ⟩ task1...taskn−−−−−−−_ R, ι⟨Σ,Θ′⟩

(StepL)
S1

α−_ S′1 S2
T−_ S′2

S1 ∥ S2 α−_ S′1 ∥ S′2
α∈{▷T,▶T} (StepR)

S1
T−_ S′1 S2

α−_ S′2

S1 ∥ S2 α−_ S′1 ∥ S′2
α∈{▷T,▶T}

Figure 1: LTS semantics of the AbU calculus.M. Miculan SERICS - SPOKE 68 23

AbU execution model

Stable

(IN
P
U

T)

v
discovery

1⃗ 2⃗

v

(EXEC)
1⃗

discovery

4⃗ 2⃗
3⃗

1⃗ . . .

. . .

3⃗

(E
X

E
C
)

3⃗
discovery

3⃗

Stable

(WAVE)

S⇝ S′

M. Miculan SERICS - SPOKE 69 23

Example: Smart Building Alarm

Four nodes: S = W ⟨Σ1,∅⟩ ∥W ⟨Σ2,∅⟩ ∥W ⟨Σ3,∅⟩ ∥ P⟨Σ4,∅⟩

Nodes state: Rule set:

doorOpen ⋗ @(alarmOn ∧ doorOpen) : siren← true

doorOpen ⋗ (alarmOn ∧ doorOpen) : siren← true

alarmSwitch ⋗ @(alarmSwitch) : alarmOn← true

alarmSwitch ⋗ @(!alarmSwitch) : siren← false, alarmOn← false

1 2

3 4

Nodes state: Triggered rules:

doorOpen ⋗ @(alarmOn ∧ doorOpen) : siren← true

doorOpen ⋗ (alarmOn ∧ doorOpen) : siren← true

1 2

3 4

Nodes state: Triggered rules:

doorOpen ⋗ @(alarmOn ∧ doorOpen) : siren← true

doorOpen ⋗ (alarmOn ∧ doorOpen) : siren← true

1 2

3 4

Nodes state: Triggered rules:

alarmSwitch ⋗ @(!alarmSwitch) : siren← false, alarmOn← false1 2

3 4

Nodes state: Triggered rules:

alarmSwitch ⋗ @(!alarmSwitch) : siren← false, alarmOn← false1 2

3 4

M. Miculan SERICS - SPOKE 610 23

A (modular) distributed implementation

AbU node

Device driversIoT interface

sensors/actuators

Distribution Communication layer

other AbU nodes
network

ECA rules engine Attribute-based memory updatesDistributed discovery

ECA rules engine module: AbU semantics
Device drivers module (GOBOT-based): abstraction of physical resources
Distribution module (Memberlist-based): abstraction of send/receive and cluster
nodes join/leave
Transactional communication (three-phase commit protocol)

M. Miculan SERICS - SPOKE 611 23

AbU-lang Programs Compilation Cycle

AbU program

De-sugaring
and

Splitting

Device 1
sub-program

Device 2
sub-program

...

Device n
sub-program

AbU Compiler

AbU Compiler

AbU Compiler

Java Compiler

Go Compiler

IoT lib

IoT lib

IoT lib

M. Miculan SERICS - SPOKE 612 23

How to port AbU to more IoT systems?

Often enough, IoT systems do not use RPC/REST or similar technologies

Nodes might not even be aware of other nodes

Applications like robotics or smart building often rely on pub/sub middlewares,

such as , or

This work [Comini, Gemolotto, M., FORTE 2025]:
A new architecture and implementation of AbU over pub/sub systems.

M. Miculan SERICS - SPOKE 613 23

Node Architecture

Three threads in parallel for each
node

Executer for rule processing
I/O Manager for handling
sensors and actuators
Transaction manager for
global rule handling

M. Miculan SERICS - SPOKE 614 23

Transaction Manager Protocol: Desired Properties

Eventual Transaction Termination: every transaction will eventually be committed.
Absence of Deadlocks: the Executer thread will always be released from its wait on T.
Absence of Race Conditions: at any point, there cannot be two nodes reaching the

commit phase at the same time, on different transactions.

M. Miculan SERICS - SPOKE 615 23

Assumptions on the system

Reliability: the middleware provides mechanism to ensure that messages are received.
Scheduling Fairness: each node implements a fair scheduler such that no thread can be

infinitely often enabled and never executed.
FIFO ordering: given two messages m1 and m2 sent in this order by the same node,

each node will receive them in the same order.
Uniqueness of message identifiers: transaction identifiers are generated locally on each

node by combining a local counter t with the node’s unique identifier id,
denoted as Id(t,id).

Many pub/sub platforms, such as the DDS implementations in use by ROS, are able to
guarantee these.

M. Miculan SERICS - SPOKE 616 23

Protocol Automata

p0start

p1

p2 p3

p4i0

i1

i2

p0start

p1

p2 p3

p4i0

i1

i2

p0start

p1

p2 p3

p4i0

i1

i2

received {OK , transId}

received
{PRECOMMIT , transId, n}

AND transId >= tid

ini
tia

te
co

mmit

re
ce

iv
ed

{C
O

M
M

IT
,
tr

an
sI
d
}

received
{PRECOMMIT , transId, n}

publish

{P
R
E
C
O

M
M

IT
, tid

,
n} re

ce
iv
ed

{C
O
M

M
IT

, t
ra
ns

Id
}

re
ce

iv
ed

{C
O

M
M

IT
,
tr

an
sI
d
}

rec
eiv

ed
{P

RECOMMIT
, tr

an
sId

, n
} AND

tra
nsI

d <
tid

pu
bli

sh
{A

BORT , ti
d}

re
ce

iv
ed

{P
R
E
C
O

M
M

IT
,
tr
an

sI
d
,
n
}

A
N
D

tr
an

sI
d
<

ti
d

pu
bl

is
h

{A
B
O

R
T
,
ti
d
}

received {OK , transId} from

n nodes publish
{COMMIT , transId}

received {ABORT , tid}

received
{P

R
E
C
O

M
M

IT
, transId

′
,
n}

A
N

D
transId

′
<

transId

publish
{A

B
O

R
T
, transId}

publish {OK
, transId}

execute local commitreceived {ABORT , transId} abort transaction

M. Miculan SERICS - SPOKE 617 23

Proving Properties: Reachability of the commit state

Proposition (Reachability of the commit state)
For a given transaction t among n participants, if no faults occur, at least one node will
eventually be able to count n “OK” messages.

Theorem (Eventual commit)
Regardless of the conflicts, any transaction will eventually commit.

M. Miculan SERICS - SPOKE 618 23

Proving Properties: Deadlocks and Race Conditions

Corollary
The Executer thread will never indefinitely wait for T to become empty (i.e., loop
indefinitely in lines 2-3 of algorithm 1), thus deadlocks are avoided.

Corollary
At any time, all automata which are in state p4 (local commit) have the same transId .

M. Miculan SERICS - SPOKE 619 23

Pseudocode

Function executer (T ,Θ,Σ):
while true do

while T ̸= NIL do
; // wait for potentially
initiated transaction to
end

U ← selectUpdate(Θ);
// select next update from
Θ; blocks if Θ = ∅

lock(T); lock(Θ);
Θ← Θ \ {U}; // remove it
from pool

(X ,Σ′)← applyUpdate(U,Σ);
if Σ′ |= ι then

Σ← Σ′;
Θ←
Θ ∪ localUpdates(R,X ,Σ);

T ←
externalUpdates(R,X ,Σ);

unlock(Θ); unlock(T);

Algorithm 1: Pseudocode for the AbU
executer.

Function inputManager(T ,Θ,Σ):
while true do

while T ̸= NIL do
; // wait for
potentially initiated
transaction to end

U ← receiveSensors();
lock(T); lock(Θ);
(X ,Σ)← applyUpdate(U,Σ);
Θ←
Θ ∪ localUpdates(R,X ,Σ);

T ←
externalUpdates(R,X ,Σ);

unlock(Θ); unlock(T);

Algorithm 2: Pseudocode for the AbU
input manager.

M. Miculan SERICS - SPOKE 620 23

Pseudocode (cont.)

Algorithm 1 Pseudocode for the AbU Transaction Manager
1: function transactionManager(T , Θ, Σ, nodeId)
2: isInitiator ← false
3: tid← NIL; U ← NIL; lT id← 0
4: while true do
5: if T ̸= NIL and tid = NIL then
6: tid← getTransId(nodeId, lT id)
7: nParticipants← getParticipants
8: publish(PRECOMMIT, tid, nParticipants, T)
9: isInitiator ← true

10: end if
11: msg ← receiveFromTopic
12: if msg = (PRECOMMIT, transId, n, T ′) then
13: if tid = NIL then
14: tid← transId
15: counter ← n
16: U ← selectValid(T ′, Σ)
17: publish(OK, tid)
18: else if transId < tid then
19: publish(ABORT, tid)
20: U ← selectValid(T ′, Σ)
21: tid← transId
22: isInitiator ← false
23: publish(OK, tid)
24: end if
25: else if msg = (OK, transId) then
26: if transId = tid and not isInitiator then

27: counter ← counter − 1
28: if counter = 0 then
29: publish(COMMIT, tid)
30: end if
31: end if
32: else if msg = (COMMIT, transId) then
33: if transId = tid then
34: if isInitiator then
35: T ← NIL
36: isInitiator ← false
37: lT id← lT id + 1
38: else
39: lock(Θ)
40: Θ← Θ ∪ U
41: unlock(Θ)
42: end if
43: tid← NIL
44: end if
45: else if msg = (ABORT, transId) then
46: if transId = tid and not isInitiator then
47: tid← NIL
48: end if
49: end if
50: end while
51: end function

1

M. Miculan SERICS - SPOKE 621 23

Conclusion

New contributions

A fully decentralized 2PC protocol based on broadcast primitives

New implementation of AbU on ROS2

ECA rule-based language for IoT and robotics applications

Future work

Finalize implementation and testing

Relaxing the assumptions (at the expense of the properties)

Lowering latency / Adding priorities to remote tasks

Application of the transactional protocol to other contexts
M. Miculan SERICS - SPOKE 622 23

References

Thanks for the attention
- M Miculan, M Pasqua, A Calculus for Attribute-based Memory Updates, Proc. ICTAC
2021 - LNCS 12819;
- M Pasqua, M Miculan, On the Security and Safety of AbU Systems, International
Conference on Software Engineering and Formal Methods, LNCS 13085, 2021.
- M Pasqua, M Miculan, Distributed Programming of Smart Systems with
Event-Condition-Action Rules, ICTCS 2022: 201-206
- M Pasqua, M Comuzzo, M Miculan, The AbU Language: IoT Distributed
Programming Made Easy, IEEE Access 10: 132763-132776 (2022)
- M Pasqua, M Miculan, AbU: A calculus for distributed event-driven programming with
attribute-based interaction. TCS 958: 113841 (2023)
- M Comini, L Gemolotto, M Miculan, Attribute-Based Communication over Pub/Sub:
Transactional Coordination for Smart Systems, Proc. FORTE 2025 - LNCS 15732
- https://github.com/abu-lang

M. Miculan SERICS - SPOKE 623 23

https://github.com/abu-lang

Behavioral equivalences (Cont’d)

Security: protection of confidential data (noninterference)

Security policy: L (public) and H (confidential) resources
No flows from H to L allowed
Bisimulation ≈hL that hides L-level updates

R1 . . .Rn

R1 . . .Rn R1 . . .Rn

Σ1 . . . Σn Σ′
1

. . . Σ′
n

≈hL

for all L-equivalent states Σ1 ≡L Σ′
1 . . .Σn ≡L Σ′

n

M. Miculan SERICS - SPOKE 61 3

Behavioral equivalences (Cont’d)

Safety: prevention of unintended interactions

The systems S and R are known to be safe
Is the ensemble of all nodes in S and R still safe?
Bisimulation ≈hS that hides the updates of S

S ∥ ≈hS

R R

S does not interact with, or is transparent for, R

M. Miculan SERICS - SPOKE 62 3

Hiding bisimulation

Weak bisimulation hiding labels not related to the requirements
Parametric on a function h making non-observable labels α such that h(α) = ⋄

if h(α2) ̸= ⋄

α1

α2

α3

≈h

α1

α2

α3

if h(α2) = ⋄

α1

α2

α3

≈h with h(α′
2) = ⋄

α1

α′
2

α3

Security hL hides:
discovery labels
execution labels with H resources

Safety hS hides:
discovery labels
execution labels produced by S

M. Miculan SERICS - SPOKE 63 3

	Appendix

