Enforcing Global Invariants
with Local Reasoning
in AbU Collective Adaptive Systems

Marino Miculan (75% UniUD, 25% UniVE)
(Joint work with M. Pasqua, UniVR)

SWOPS 2 — IMT Alti Studi, Lucca — June 13, 2024

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Actual loT/smart architecture

* Centralized

* No inter-nodes
communication

a5
N\
f

N
 Cloud-dependent
 Very popular as Trigger- \ Internet
Action Platforms (TAP)
* Google Home \
o |[FTTT
© O— | 3}

-4

« Samsung SmartThings

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Next (ECA) loT architecture: edge computing
e Fully distributed

« Communication between
nodes E

 Cloud-agnostic

* |dentity decoupled, for
scalability L Internet

 Collective Adaptive
Systems

'4—» > > l] 4—»“

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Programming model for edge CAS?

* We need programming abstractions and models for edge
computing with:

 peer-to-peer, decentralised control

* identity decoupling, for scalability (no point-to-point
communication)

* open and flexible (nodes can join and leave dynamically)
* which integrate neatly within the ECA paradigm

 Our proposal:
Attribute-based distributed declarative programming
(rooted in Attribute-based Communication)

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Attribute-based Memory Updates

* Nodes behavior: defined by ECA rules like
“on z;...z, forallll : x; < ¢e;...x, < e,

Nodes state: local memory Interaction: remote updates
f___ P
\r — 9
- o =
T
. _J

o Attribute-based interaction: on all nodes satisfying l1, update

the remote X, ..., x, with the values of ¢, ..., ¢,

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

AbU syntax

* AbU systems: S:=R,i(Z,0) | § 15
* R = list of AbU rules

- 2. = state of the node (local variables, attributes)

* 1 = invariant over local variables (specifies admissible states)

« ® = set of pending updates
* Form of the rules:

event default . forall @ - --———--—-———- X < & (remote)
as

evt > act; , cnd:acty
| |

list of resources L ‘ x 4= € (local)

assignments

AN

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

AbU execution model

Stable Stable

> = e

S s S ©

A
g y discovery E”é)\ . | |
5 | W discovery
Y
B #] (Exec) L
© O||l1 3 7 O O||l 4 32 .. 1O O
O | O 3 ‘ O

discovery

—0 Wi
~——

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

AbU operational semantics

LTS semantics, with judgments of the form
R,u(¥X,0) % R, (X, O

* Labels:
* Input (from devices): upd T
* Internal execution: upd DT

» “Discovery” (receive): T
(T is a list of updates generated by a rule’s firing)
* Interleaving semantics: communications are atomic transactions

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

AbU semantics: SOS rules

upd € © upd = (x1,v1) ... (XK, v) X' =Xvi/x1...vx/xx] X' E0
O" =0 \{upd} X ={xi|ie[l.k]AX(x) # X' (x:)}
©' = ©" UlocalUpds(R, X,Y") T = ExtTasks(R, X, Y")
upd>T

R, (X, 0) 220 R, (X, 0
UpdE@ ude(Xl,’Ul)...(Xk;,’Uk) 2/22[’01/X1...’l)k/xk] E/I#L @/:@\{upd}

(Exec)

(Exec-F) s
R,.(¥,0) —— R, (X, 60"
V1,...,VU € vV XY = E[’Ul/Xl .. .’Uk;/Xk] X = {Xl,... ,Xk}
(InpUT) ©' = © U LocalUpds(R, X,Y") T = ExtTasks(R,X,Y")
R7 [/<27 @> (X1,vl)...(xk,Uk)P’I'{> R, [/<2,’ 8/>
O" ={[act] X | i € [1.n].task; = p:act A X =} O =6OUO"
(D1sc)
ISC
R, L<2, @) taskl...tasknD R, L<2, @,>
S; %S, Sy =S S, S, Sy %8
(STEPL) ac{upd>T ,upd»-T'} (STEPR) a€e{upd>T,updp-T'}

Si]l Sz =S| Sh S1 | S2 =+ Si || S5

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

(Some) Research questions and problems

» Stability: after an input, does a wave computationL'CTAC 2021, TCS 2023]}
always terminate?

» Confluence: will different executions end up with the

?
same state(s): [SEFM 2021, TCS 2024] }
 Security: how to avoid information leakages?

- Safety: how to avoid unintended interactions? ECCESS 2023] J

* Implementation: how to make it efficient, portable
and scalable?

(None of these problems is definitely solved. Still a lot to do!)

Enforcing Global Invariants with Local Reasoning in AbU

Example: smart HVAC system
Ry, 15(Xs, @) || Re(X%, @) || R X, D)

* Three kinds of devices: ‘system’, ‘tempSens’, ‘humSens’
« Control system’s state:

s = |heating—ff conditioning+—ff temperature— 0
humidity—0 airButton—£ff node+ ‘system’]

e ...and rules:

temperature > (temperature < 18) : heating < tt
temperature > (temperature > 27) : heating < ff
airButton > (airButton = tt) : conditioning +— £f

humidity temperature >

(2 + 0.5 * temperature < humidity A 38 — temperature < humidity) :
conditioning <— tt

M. Miculan

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Example: smart HVAC system (cont.)

* Temperature sensor:

Yy = |temperature—19 node— ‘tempSens’]
R; £ temperature > @Q(node = ‘system’) : temperature « temperature

* Humidity sensor:
Yn = | humidity 40 node— ‘humSens’|

R, = humidity > @(node = ‘system’) : humidity < humidity

* Invariant on control system node:

s = —(conditioning A heating)

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Smart HVAC revisited: without system node

* Heating and conditioning controllers are moved to temperature
and humidity sensor nodes
Rt<2t7 @> H Rh<2h7 ®>

* Temperature node:
3y = [temperature— 19 heating+— ££]
temperature > (tt) : temperature < temperature

temperature > (temperature < 18) : heating < tt
temperature > (temperature > 27) : heating < £f

* Humidity node
Y'p = [humidity—40 conditioning+—ff airButton— £f |
airButton > (airButton = tt) : conditioning < ff

humidity temperature >
(2 4 0.5 * temperature < humidity A 38 — temperature < humidity) :

conditioning < tt

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

And what about the invariant?

* The invariant which was local to control system, now becomes a
global invariant, predicating on variables of different nodes:

I = —(conditioningy A heating;)

* How can we enforce this invariant without a central node?

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

From Global to Local Invariants

* We can guarantee global invariants in CASs by projecting a
global invariant to many node-level, local invariants

* The fulfillment of local invariants, under specific assumptions,
guarantees the fulfillment of the corresponding global invariant

* Requires the replication of invariant on all nodes having at least
a resource appearing in it

* AbU nodes do not have knowledge about other node’s resources,
hence have to propagate modifications to resources in the
scope of global invariants to all interested nodes.

 Such synchronization is achieved by adding suitable AbU remote
updates for each resource in the scope of global invariants

Enforcing Global Invariants with Local Reasoning in AbU

Decentralizelnvariant(S,I)

o Lk W N

Algorithm DecentralizeInvariant (S, I)

/* the global invariant [is of the form ¢1 A ... Atm
for : from 1 to n do

for 7 from 1 to m do

if vars(c;) Nvars(X;) # @ then

fi pmm iz A\ Lj

for all x in vars(¢;) \ vars(X;) do
| X=X [x—0]

end

for all x in vars(¢;) Nvars(X;) do
| R, =R; :x>Q(tt): X+ x

end

end

end

end

return S

/* the AbU system S is of the form R1,0:(X1,01) || ... || Rn,in{(Xn,On)

// here

// here W denotes state join and v € type(x)

:: denotes l1list concat

M. Miculan

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Revisited Smart HVAC system

 After the execution of Decentralizelnvariant(S,l):

Yy = [temperature— 19 heating—ff conditioningr £f |
Y'r, = [humidity+— 40 conditioning+— £ff airButton+—ff heatingr £f |

* Rule added to temperature node:
heating > Q(tt) : heating < heating

* Rule added to the heating node:
conditioning > @Q(tt) : conditioning + conditioning

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

But does it work?

* Yes, if update execution in nodes respect some order
* Recall (Exec) rule: There is no a priori fixed scheduling policy

upd € @ upd = (x1,v1) ... (X, vk) X' =Xvi/x1...05/xk] X E1
@” — @ \ {upd} X = {Xi |) & [lk] A\ E(Xz) 7é El(XZ)}
©" = 0" UlocalUpds(R, X,Y’) T = ExtTasks(R, X,X")

upd>T

(Exec)
R, (¥, 0) —— R, (X', O)

 But synchronization updates must be executed before any other
pending update in pool, otherwise they can be dropped due to invariant
invalidation

* This calls for priority scheduling

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

LTS semantics with priority

» Labels: (P, T); upd > (P, T);upd » (P, T)
where P is a list of high priority task

* (Exec) rules are modified accordingly

upd € © upd = (x1,v1) ... (k,vp) 2= Do /xaoe/xa] 2
X = {x; | i€ 1.kl AX(x;) # X (xi)} LocalUpds(R, X, X)) = (©",0")
e =6\ {upd}) UOe" © =0U6" ExtTasks(R,X,%") = (P,T)

R,

(ExeECP) - - -
¥,(6,0) 2D, k(5 (6,6))

O©=2 updeO upd=(xi,v1)...(xk,08) X'=Xvi/xi.on/xi] X
X ={xi|i€[1.k]AX(x;) # X' (xi)} LocalUpds(R, X,X") = (0", 60")
O =0U6" O =(©\{upd})UO” ExtTasks(R,X,X’) = (P,T)

(EXEC) A u A
R, (6,0)) 2D, k(5 (6,0")

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Soundness of Decentralized invariants

* Priority semantics guarantees that local invariants are enough
for enforcing global invariants

Theorem 1 (Local Invariants Soundness). Let Sy be a system obtained
from an AbU system S by decentralizing the invariant I as per Algorithm 1. If
Sy satisfies I, then for all S" reachable from S,, S’ satisfies I.

Enforcing Global Invariants with Local Reasoning in AbU M. Miculan

Conclusions

 Global invariants can be implemented by means of local
invariants, provided that the local execution of updates respect
priority of synchronization messages

* Future work:
 Other kinds of properties, e.g. liveness, fairness, etc.
* Temporal properties
* Non-interference
* Resilience: how to recover an invariant when it fails?

https://github.com/abu-lang

https://github.com/abu-lang

