
Enforcing Global Invariants 
with Local Reasoning 
in AbU Collective Adaptive Systems
Marino Miculan (75% UniUD, 25% UniVE) 
(Joint work with M. Pasqua, UniVR) 

SWOPS 2 — IMT Alti Studi, Lucca — June 13, 2024



Enforcing Global Invariants with Local Reasoning in AbU                     M. Miculan

Actual IoT/smart architecture

• Centralized 
• No inter-nodes 

communication 
• Cloud-dependent 
• Very popular as Trigger-

Action Platforms (TAP) 
• Google Home 
• IFTTT 
• Samsung SmartThings 
• …

Actual smart (ECA) devices setting

Centralized

No intra-nodes communication

Cloud-dependent

Very popular as Trigger-Action

Platforms (TAP):

Internet

M. Miculan Theory Days 20242 22



Enforcing Global Invariants with Local Reasoning in AbU                     M. Miculan

Next (ECA) IoT architecture: edge computing 

• Fully distributed 
• Communication between 

nodes  
• Cloud-agnostic 
• Identity decoupled, for 

scalability  
• Collective Adaptive 

Systems

Next (ECA) IoT architecture: edge computing

Fully distributed

Communication between nodes

Cloud-agnostic

Identity decoupled, for scalability

Collective Adaptive Systems

Internet
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Programming model for edge CAS?

• We need programming abstractions and models for edge 
computing with: 
• peer-to-peer, decentralised control 
• identity decoupling, for scalability (no point-to-point 

communication) 
• open and flexible (nodes can join and leave dynamically) 
• which integrate neatly within the ECA paradigm 

• Our proposal: 
Attribute-based distributed declarative programming  
(rooted in Attribute-based Communication)
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Attribute-based Memory Updates

• Nodes behavior: defined by ECA rules like 

“on  for all ” 

 

 

• Attribute-based interaction: on all nodes satisfying Π, update 
the remote  with the values of 

z1…zm Π : x1 ← e1…xn ← en

x1, …, xn e1, …, en

Attribute-based Memory Updates [MM, M. Pasqua, ICTAC 2021]

Nodes behavior: defined by ECA rules like “on z for all ⇧ : x  e”

3 2

1

Nodes state: local memory

Interaction: remote updates

1

2

Interaction: remote updates

1

2

Attribute-based interaction: on all nodes satisfying ⇧, update the remote x with e
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AbU syntax

• AbU systems:        

•  = list of AbU rules 

•  = state of the node (local variables, attributes) 

•  = invariant over local variables (specifies admissible states)  

•  = set of pending updates 
• Form of the rules:

S ::= R, ι⟨Σ, Θ⟩ ∣ S1 ∥ S2
R
Σ
ι
Θ

AbU syntax

An AbU system S is an AbU node R , ◆h⌃, ⇥i or the parallel of systems S1 kS2

Each node is equipped with a list R of AbU rules and an invariant ◆ specifying
admissible states

evt m act1 , cnd : act2
task

event

list of resources

assignments

x  " (local)

forall @ x  " (remote)default

for all: @(x < x̄) : x̄  x , ȳ  ȳ + 1

“on all nodes with (remote) x greater than the current (local) x”

“update the (remote) x with the current (local) x , and increment remote y ”
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AbU execution model
AbU execution model
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AbU operational semantics 

• LTS semantics, with judgments of the form 

• Labels: 
• Input (from devices): upd ►T 
• Internal execution:   upd ▷T 

• “Discovery” (receive): T 
• (T is a list of updates generated by a rule’s firing) 

• Interleaving semantics: communications are atomic transactions 

AbU operational semantics [M. Pasqua, MM, TCS 2023]

LTS semantics, with judgments:

R , ◆h⌃, ⇥i ↵�_ R , ◆h⌃0, ⇥0i

A label ↵ can be:
an input label, upd I T

an execution label, upd B T

a discovery label, T
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AbU semantics: SOS rules
Local Reasoning and AbU for Enforcing Global Invariants in CASs 5

(Exec)

upd 2 ⇥ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
⇥00 = ⇥ \ {upd} X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)}
⇥0 = ⇥00 [ LocalUpds(R,X,⌃0) T = ExtTasks(R,X,⌃0)

R, ◆h⌃,⇥i updBT����_ R, ◆h⌃0,⇥0i

(Exec-F)
upd 2 ⇥ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥0 = ⇥ \ {upd}

R, ◆h⌃,⇥i updB✏���_ R, ◆h⌃,⇥0i

(Input)

v1, . . . , vk 2 V ⌃0 = ⌃[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
⇥0 = ⇥ [ LocalUpds(R,X,⌃0) T = ExtTasks(R,X,⌃0)

R, ◆h⌃,⇥i (x1,v1)...(xk,vk)IT�������������_ R, ◆h⌃0,⇥0i

(Disc)
⇥00 = {JactK⌃ | 9i 2 [1..n] . taski = ' : act ^⌃ |= '} ⇥0 = ⇥ [⇥00

R, ◆h⌃,⇥i task1...taskn�������_ R, ◆h⌃,⇥0i

(StepL)
S1

↵�_ S0
1 S2

T�_ S0
2

S1 k S2
↵�_ S0

1 k S0
2

↵2{updBT,updIT} (StepR)
S1

T�_ S0
1 S2

↵�_ S0
2

S1 k S2
↵�_ S0

1 k S0
2

↵2{updBT,updIT}

Fig. 2. LTS Semantics of the AbU calculus.

LocalUpds(R,X,⌃) , {Jact2K⌃ | 9evtm ' : act2 2 Active(R,X) .⌃ |= '}

ExtTasks(R,X,⌃) , {|task1|}⌃ . . . {|taskn|}⌃ given that:
8i 2 [1..n] 9evtm taski 2 Active(R,X) . taski = @' : act

Active(rule1 . . . rulen, X) , {rulei | 9i 2 [1..n] . rulei = evtm task ^ evt \X 6= ?}

Fig. 3. Discovery functions definition used by AbU calculus semantics.

The AbU semantics also checks the fulfillment of invariants. Indeed, the rule

(Exec) is applied only when the state modified by the update still satisfies the

invariant (i.e., ⌃0 |= ◆); otherwise, rule (Exec-F) is applied. In this case, the

update that would lead to a “bad” state is discarded and removed from the pool.

2.2 CAS Examples in AbU

Drone Swarm Consider a scenario where a swarm of terrestrial drones is in charge

of taking specific measurements, randomly picked in a large uninhabited area.

Each drone is equipped with a battery that periodically needs to be recharged

by returning to a docking station. It may happen that a drone runs out of energy

before returning to the charging spot. In this case, the low-battery drone asks for

help from its neighbors. If a drone has some energy to share and it is close enough

to the requester, it will enter the ‘rescue mode’. We can model this scenario in

AbU as follows (without the energy transfer phase, due to space reasons).

Suppose we have four drones. For each drone we have an AbU node with a

resource battery, indicating the battery level of the drone; a resource position,

indicating where is located the drone; a resource mode, indicating in which

operative state is the drone; and a resource helpPos, indicating the position of
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(Some) Research questions and problems

• Stability: after an input, does a wave computation 
always terminate? 
• Confluence: will different executions end up with the 

same state(s)? 
• Security: how to avoid information leakages? 
• Safety: how to avoid unintended interactions? 
• Implementation: how to make it efficient, portable 

and scalable? 
• Global invariants: how to guarantee that executions 

will not invalidate a given global property? 

[ICTAC 2021, TCS 2023]

[SEFM 2021, TCS 2024]

[IEEE ACCESS 2023]

This talk!

(None of these problems is definitely solved. Still a lot to do!)



Enforcing Global Invariants with Local Reasoning in AbU                     M. Miculan

Example: smart HVAC system

• Three kinds of devices: ‘system’, ‘tempSens’, ‘humSens’ 
• Control system’s state:  

• …and rules:

6 M. Pasqua and M. Miculan

a drone that needs help. Formally, the AbU system modeling the drone-swarm

scenario is

S = Rh⌃1,?i k Rh⌃2,?i k Rh⌃3,?i k Rh⌃4,?i
where R contains, among the others, the following two AbU rules:

battery m@(battery < 5 ^ battery > 80) : helpPos position (1)

helpPos m (|position� helpPos| < 7.0) : mode ‘rescue’ (2)

Now suppose that the execution states of the drones are the following:

⌃1 = [ battery 7!4 position 7!2.0 mode 7! ‘measure’ helpPos 7!0.0 ]
⌃2 = [ battery 7!81 position 7!15.0 mode 7! ‘measure’ helpPos 7!0.0 ]
⌃3 = [ battery 7!97 position 7!6.0 mode 7! ‘measure’ helpPos 7!0.0 ]
⌃4 = [ battery 7!65 position 7!8.0 mode 7! ‘measure’ helpPos 7!0.0 ]

The rule (1) says that when the current drone battery level is low (i.e.,

battery < 5), then the current drone have to send to all neighbors with some

energy to share (i.e., battery > 80) its position, performing a remote update:

helpPos position. In the example, the first node can fire the rule (1), since its

battery level is low. Then, it pre-evaluates the task condition, yielding 4 < 5 ^
battery > 80, which is sent to the other nodes, together with the pre-evaluation

of the task action, i.e., helpPos 2.0. Among all receivers, only the second and

the third nodes are interested in the communication, since they are the only

with battery level greater than 80. So they both add to their pool the update

(helpPos, 2.0). This ends the discovery phase originated by the first node.

The rule (2), instead, is fired when a drone receives a help request (i.e.,

when its resource helpPos changes) and basically checks if the current drone

position is close to the requester position (i.e., |position � helpPos| < 7.0). If it

is the case, the current drone enters the rescue mode performing a local update:

mode ‘rescue’. In the example, when the second and the third nodes execute

the update (helpPos, 2.0), the task of the rule (2) may be executed. For the

second node this does not happen, since |15.0 � 2.0| < 7.0 does not hold (the

node is too far from the first node). Instead, |6.0�2.0| < 7.0 holds and the third

node can execute the rule task, adding to its pool the update (mode, ‘rescue’).

Smart HVAC System In this example, we provide an AbU implementation of a

Heating, Ventilation and Air Conditioning (HVAC) system, that makes use of

device invariants, namely local invariants on single nodes. In this scenario we

have three devices connected through a network: the HVAC control system, a

temperature sensor, and a humidity sensor. To distinguish the devices, a logical

resource node is used, which takes the values ‘system’, ‘tempSens’ and ‘humSens’
on the HVAC control system, the temperature sensor and the humidity sensor,

respectively. We model such scenario in AbU as follows. The execution state for

the HVAC control system is:

⌃s = [ heating 7!ff conditioning 7!ff temperature 7!0

humidity 7!0 airButton 7!ff node 7! ‘system’ ]
Local Reasoning and AbU for Enforcing Global Invariants in CASs 7

while its ECA rules Rs are:

temperature m (temperature < 18) : heating tt (3)

temperature m (temperature > 27) : heating ff (4)

airButton m (airButton = tt) : conditioning ff (5)

humidity temperaturem
(2 + 0.5 ⇤ temperature < humidity ^ 38� temperature < humidity) :

conditioning tt

(6)

The HVAC control system activates heating and air conditioning according to

the values of temperature and humidity, received by the sensors. In particular,

when the temperature is lower than 18�C (i.e., temperature < 18) the rule

(3) activates the heating with the update: heating  tt. Instead, when the

temperature is greater than 27�C (i.e., temperature > 27), then the rule (4)

deactivates the heating with the update: heating  ff. The air conditioning is

turned on (with the update conditioning tt), by means of the rule (6), when

the humidity exceeds the upper bound of the Givoni’s comfort zone [14].

The execution state for the temperature and the humidity sensors are:

⌃t = [ temperature 7!19 node 7! ‘tempSens’ ]
⌃h = [ humidity 7!40 node 7! ‘humSens’ ]

while their ECA rules are:

Rt , temperature m@(node = ‘system’) : temperature temperature (7)

Rh , humidity m@(node = ‘system’) : humidity humidity (8)

The rule (7) on the temperature sensor device is simply responsible of sig-

naling changes to the resource temperature to the HVAC control system, by

selecting all devices that have the resource node equals to ‘system’; while the

rule (8) do the same for the resource humidity on the humidity sensor device.

The HVAC control system is also bestowed with a physical button for man-

ually stopping the air conditioning. Indeed, the rule (5) stops the air condi-

tioning (with the update conditioning  ff) when the button is pressed (i.e.,

airButton = tt). Finally, by means of the invariant
4

◆s = ¬(conditioning ^ heating)

on the HVAC control system device we specify that no update can result in the

activation of both heating and air conditioning simultaneously. The complete

AbU system is:

Rs, ◆sh⌃s,?i k Rth⌃t,?i k Rhh⌃h,?i
Note that, the same problem can be modeled by means of a single device,

embedding the two sensors and the control system. We can model this scenario

in AbU with a single device comprising all resources introduced so far and trans-

forming remote rules into local ones. This highlights the flexibility of AbU, that

is able to model both distributed and centralized ensembles of devices.

4 The formal definition of invariants will be introduced in Section 3.
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while its ECA rules Rs are:
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temperature m (temperature > 27) : heating ff (4)

airButton m (airButton = tt) : conditioning ff (5)

humidity temperaturem
(2 + 0.5 ⇤ temperature < humidity ^ 38� temperature < humidity) :

conditioning tt

(6)

The HVAC control system activates heating and air conditioning according to

the values of temperature and humidity, received by the sensors. In particular,

when the temperature is lower than 18�C (i.e., temperature < 18) the rule

(3) activates the heating with the update: heating  tt. Instead, when the

temperature is greater than 27�C (i.e., temperature > 27), then the rule (4)

deactivates the heating with the update: heating  ff. The air conditioning is

turned on (with the update conditioning tt), by means of the rule (6), when

the humidity exceeds the upper bound of the Givoni’s comfort zone [14].

The execution state for the temperature and the humidity sensors are:

⌃t = [ temperature 7!19 node 7! ‘tempSens’ ]
⌃h = [ humidity 7!40 node 7! ‘humSens’ ]

while their ECA rules are:

Rt , temperature m@(node = ‘system’) : temperature temperature (7)

Rh , humidity m@(node = ‘system’) : humidity humidity (8)

The rule (7) on the temperature sensor device is simply responsible of sig-

naling changes to the resource temperature to the HVAC control system, by

selecting all devices that have the resource node equals to ‘system’; while the

rule (8) do the same for the resource humidity on the humidity sensor device.

The HVAC control system is also bestowed with a physical button for man-

ually stopping the air conditioning. Indeed, the rule (5) stops the air condi-

tioning (with the update conditioning  ff) when the button is pressed (i.e.,

airButton = tt). Finally, by means of the invariant
4

◆s = ¬(conditioning ^ heating)

on the HVAC control system device we specify that no update can result in the

activation of both heating and air conditioning simultaneously. The complete

AbU system is:

Rs, ◆sh⌃s,?i k Rth⌃t,?i k Rhh⌃h,?i
Note that, the same problem can be modeled by means of a single device,

embedding the two sensors and the control system. We can model this scenario

in AbU with a single device comprising all resources introduced so far and trans-

forming remote rules into local ones. This highlights the flexibility of AbU, that

is able to model both distributed and centralized ensembles of devices.

4 The formal definition of invariants will be introduced in Section 3.
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Example: smart HVAC system (cont.)

• Temperature sensor: 

• Humidity sensor: 

• Invariant on control system node:
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while its ECA rules Rs are:

temperature m (temperature < 18) : heating tt (3)

temperature m (temperature > 27) : heating ff (4)

airButton m (airButton = tt) : conditioning ff (5)

humidity temperaturem
(2 + 0.5 ⇤ temperature < humidity ^ 38� temperature < humidity) :

conditioning tt

(6)

The HVAC control system activates heating and air conditioning according to

the values of temperature and humidity, received by the sensors. In particular,

when the temperature is lower than 18�C (i.e., temperature < 18) the rule

(3) activates the heating with the update: heating  tt. Instead, when the

temperature is greater than 27�C (i.e., temperature > 27), then the rule (4)

deactivates the heating with the update: heating  ff. The air conditioning is

turned on (with the update conditioning tt), by means of the rule (6), when

the humidity exceeds the upper bound of the Givoni’s comfort zone [14].

The execution state for the temperature and the humidity sensors are:

⌃t = [ temperature 7!19 node 7! ‘tempSens’ ]
⌃h = [ humidity 7!40 node 7! ‘humSens’ ]

while their ECA rules are:

Rt , temperature m@(node = ‘system’) : temperature temperature (7)

Rh , humidity m@(node = ‘system’) : humidity humidity (8)

The rule (7) on the temperature sensor device is simply responsible of sig-

naling changes to the resource temperature to the HVAC control system, by

selecting all devices that have the resource node equals to ‘system’; while the

rule (8) do the same for the resource humidity on the humidity sensor device.

The HVAC control system is also bestowed with a physical button for man-

ually stopping the air conditioning. Indeed, the rule (5) stops the air condi-

tioning (with the update conditioning  ff) when the button is pressed (i.e.,

airButton = tt). Finally, by means of the invariant
4

◆s = ¬(conditioning ^ heating)

on the HVAC control system device we specify that no update can result in the

activation of both heating and air conditioning simultaneously. The complete

AbU system is:

Rs, ◆sh⌃s,?i k Rth⌃t,?i k Rhh⌃h,?i
Note that, the same problem can be modeled by means of a single device,

embedding the two sensors and the control system. We can model this scenario

in AbU with a single device comprising all resources introduced so far and trans-

forming remote rules into local ones. This highlights the flexibility of AbU, that

is able to model both distributed and centralized ensembles of devices.

4 The formal definition of invariants will be introduced in Section 3.
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is able to model both distributed and centralized ensembles of devices.

4 The formal definition of invariants will be introduced in Section 3.
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forming remote rules into local ones. This highlights the flexibility of AbU, that

is able to model both distributed and centralized ensembles of devices.

4 The formal definition of invariants will be introduced in Section 3.
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Note that, the same problem can be modeled by means of a single device,

embedding the two sensors and the control system. We can model this scenario

in AbU with a single device comprising all resources introduced so far and trans-

forming remote rules into local ones. This highlights the flexibility of AbU, that

is able to model both distributed and centralized ensembles of devices.

4 The formal definition of invariants will be introduced in Section 3.
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Smart HVAC revisited: without system node

• Heating and conditioning controllers are moved to temperature 
and humidity sensor nodes 
• Temperature node: 

• Humidity node
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3 Distributed Verification of System-level Invariants

We model local invariants as systems of linear inequalities over AbU expressions

", where expressions can only range over the resources of the node the invariants

belong to. That is, invariants ◆ are defined by the following grammar.

◆ ::= ineq | ¬◆ | ◆ ^ ◆ | (◆)
ineq ::= " < v | "  v | " 6= " with v 2 V

Here expressions " cannot contain remote resource lookup x. Note that, we can

express inequalities between arbitrary expressions with simple syntactic refac-

toring. For instance, we can express "1 < "2 as "1 � "2 < 0. Similarly, we can

express equality by negating an inequality. For instance, we can express "1 = "2
as ¬("1 6= "2).

In the following, we assume to have boolean, numeric (integers and deci-

mals) and string values in V, and to have basic arithmetic operations (addition,

subtraction, multiplication and division) over numeric values, as well as basic

operations (length, substring and concatenation) over string values. Comparison

operators < and  are defined for numeric values only (with the usual seman-

tics), while 6= is defined for all values.

Global invariants, or system-level invariants, have the same syntactic struc-

ture of local invariants, the only difference is that in global invariants I expres-

sions can range over resources of all nodes in the system. Moreover, in global

invariants resources may be indexed with node identifiers, to distinguish re-

sources (potentially having the same name) belonging to different nodes. If not

indexed, global invariant resources are considered on all possible nodes in the

system, keeping node anonymity typical of AbU. Nevertheless, in some scenarios

it may be necessary to refer to specific resources on specific nodes, so we added

that possibility in global invariants. The indexing is just syntactic sugar: when

nodes are not anonymous we can rename their resources with unique identifiers.

Smart HVAC System Revisited Suppose to modify the HVAC example of Sub-

section 2.2, in order to remove the control system node. Heating and conditioning

controllers are moved to the temperature and humidity sensor nodes.

The execution state for the temperature and the humidity sensors become:

⌃t = [ temperature 7!19 heating 7!ff ]
⌃h = [ humidity 7!40 conditioning 7!ff airButton 7!ff ]

The ECA rules Rt for the temperature sensor node are:

temperature m (tt) : temperature temperature (9)

temperature m (temperature < 18) : heating tt (10)

temperature m (temperature > 27) : heating ff (11)
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temperature m (tt) : temperature temperature (9)
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The ECA rules Rh for the humidity sensor node are:

airButton m (airButton = tt) : conditioning ff (12)

humidity temperaturem
(2 + 0.5 ⇤ temperature < humidity ^ 38� temperature < humidity) :

conditioning tt

(13)

This formulation of the problem is equivalent to the one presented in Sub-

section 2.2, except for the invariant. Indeed, it is not guaranteed that the condi-

tioning system and the heater cannot be on at the same time. To enforce such

behavior we need a global invariant:

I = ¬(conditioningh ^ heatingt)

meaning that the resources conditioningh of the humidity node and the resource

heatingt of the temperature node cannot be tt at the same time. Note that, we

could also have not indexed the resources conditioning and heating. Without the

indexes, the global invariant I would have to hold for all possible nodes having

conditioning and conditioning as resources.

3.1 From Global to Local Invariants

Global invariants are properties, possibly involving multiple nodes, that must

hold for all components of the system. Ensuring the fulfillment of global in-

variants requires, in general, a central authority enforcing such property and,

consequently, knowing the topology of the system (or, at least, keeping an in-

ventory of all deployed nodes). A central authority is in contrast with autonomic

systems, which are decentralized in nature and usually rely on peer-to-peer com-

munication only.

By exploiting AbU, we can guarantee global invariants in CASs without the

need of a central controlling authority. This is done by projecting a system-level

invariant to an ensemble of node-level invariants, that is, AbU local invariants.

The idea is that the fulfillment of local invariants, under specific assumptions,

guarantees the fulfillment of the corresponding global invariant. This requires

the replication of a global invariant on all nodes in its scope, that is, on all

nodes having at least a resource appearing in the (global) invariant. Since AbU

nodes do not have a shared knowledge about the state of external resources, we

have to propagate modifications to resources in the scope of global invariants to

all interested nodes. Such synchronization is achieved by adding suitable AbU

remote updates for each resource in the scope of global invariants.

Algorithm 1 describes how an AbU system S can be modified in order to

fulfill a global invariant I by means of an ensemble of local invariants, added to

the nodes in S. In particular, the algorithm assumes as input a global invariant

I in the conjunctive normal form, that is, of the form
Vm

i=1 ◆i where each ◆i
are either of the form ineq or ¬◆. The outer loops at lines 1..2 try to add each

conjunct of I to each node of the system S. This happens only when at least
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while its ECA rules Rs are:

temperature m (temperature < 18) : heating tt (3)

temperature m (temperature > 27) : heating ff (4)

airButton m (airButton = tt) : conditioning ff (5)

humidity temperaturem
(2 + 0.5 ⇤ temperature < humidity ^ 38� temperature < humidity) :

conditioning tt

(6)

The HVAC control system activates heating and air conditioning according to

the values of temperature and humidity, received by the sensors. In particular,

when the temperature is lower than 18�C (i.e., temperature < 18) the rule

(3) activates the heating with the update: heating  tt. Instead, when the

temperature is greater than 27�C (i.e., temperature > 27), then the rule (4)

deactivates the heating with the update: heating  ff. The air conditioning is

turned on (with the update conditioning tt), by means of the rule (6), when

the humidity exceeds the upper bound of the Givoni’s comfort zone [14].

The execution state for the temperature and the humidity sensors are:

⌃t = [ temperature 7!19 node 7! ‘tempSens’ ]
⌃h = [ humidity 7!40 node 7! ‘humSens’ ]

while their ECA rules are:

Rt , temperature m@(node = ‘system’) : temperature temperature (7)

Rh , humidity m@(node = ‘system’) : humidity humidity (8)

The rule (7) on the temperature sensor device is simply responsible of sig-

naling changes to the resource temperature to the HVAC control system, by

selecting all devices that have the resource node equals to ‘system’; while the

rule (8) do the same for the resource humidity on the humidity sensor device.

The HVAC control system is also bestowed with a physical button for man-

ually stopping the air conditioning. Indeed, the rule (5) stops the air condi-

tioning (with the update conditioning  ff) when the button is pressed (i.e.,

airButton = tt). Finally, by means of the invariant
4

◆s = ¬(conditioning ^ heating)

on the HVAC control system device we specify that no update can result in the

activation of both heating and air conditioning simultaneously. The complete

AbU system is:

Rs, ◆sh⌃s,?i k Rth⌃t,?i k Rhh⌃h,?i
Note that, the same problem can be modeled by means of a single device,

embedding the two sensors and the control system. We can model this scenario

in AbU with a single device comprising all resources introduced so far and trans-

forming remote rules into local ones. This highlights the flexibility of AbU, that

is able to model both distributed and centralized ensembles of devices.

4 The formal definition of invariants will be introduced in Section 3.
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And what about the invariant?

• The invariant which was local to control system, now becomes a 
global invariant, predicating on variables of different nodes: 

• How can we enforce this invariant without a central node?
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From Global to Local Invariants

• We can guarantee global invariants in CASs by projecting a 
global invariant to many node-level, local invariants 
• The fulfillment of local invariants, under specific assumptions, 

guarantees the fulfillment of the corresponding global invariant 
• Requires the replication of invariant on all nodes having at least 

a resource appearing in it 
• AbU nodes do not have knowledge about other node’s resources, 

hence have to propagate modifications to resources in the 
scope of global invariants to all interested nodes. 
• Such synchronization is achieved by adding suitable AbU remote 

updates for each resource in the scope of global invariants
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DecentralizeInvariant(S,I)
10 M. Pasqua and M. Miculan

Algorithm DecentralizeInvariant(S, I)
/* the AbU system S is of the form R1, ◆̂1h⌃1,⇥1i k . . . k Rn, ◆̂nh⌃n,⇥ni */
/* the global invariant I is of the form ◆1 ^ . . . ^ ◆m */

1 for i from 1 to n do
2 for j from 1 to m do
3 if vars(◆j) \ vars(⌃i) 6= ? then
4 ◆̂i := ◆̂i ^ ◆j
5 for all x in vars(◆j) \ vars(⌃i) do
6 ⌃i := ⌃i ] [ x 7!v ] // here ] denotes state join and v2 type(x)

end
7 for all x in vars(◆j) \ vars(⌃i) do
8 Ri := Ri :: x�@(tt) : x x // here :: denotes list concat

end
end

end
end

9 return S

Algorithm 1. Enhancing an AbU system with local invariants derived from

a given global invariant.

one resource in the scope of the conjunct belongs to a node (condition at line

3). The line 4 add such conjunct ◆j to the local invariant ◆̂i of the ith node of

S. The inner loop at line 5 then adds all resources in the scope of the added

conjunct not already belong to the modified node to the node’s state ⌃i (line

6). The added resources are initialized with a random value of the correct type.

Finally, the inner loop at line 7 adds to the modified node the ECA rules need

for synchronization. In particular, each resource x in the scope of the conjunct

that already belong to the modified node (condition at line 7) can be potentially

be (locally) updated by the node. Such modification should be reported to the

other nodes involved in the fulfillment of the conjunct (and, hence, of the global

invariant). This is done by performing a remote update of the local resource x by

adding a new ECA rule to rule list of the ith node in S (line 8). The added rule

here is a special rule having higher priority, since synchronization updates must

be considered before normal updates. A rule evt � task has the same meaning

of a standard AbU rule evtmtask except for the fact that the AbU semantics will

consider it with higher priority. This would need to add a priority-based update

scheduling mechanism to AbU, as we will see in Section 4.

Coming back to the revisited smart HVAC system introduced at the begin-

ning of the section, by applying Algorithm 1 we obtain the following AbU system.

The resource conditioning is added to the state of the temperature node, and

the resource heating is added to the state of the humidity node. That is:

⌃t = [ temperature 7!19 heating 7!ff conditioning 7!ff ]
⌃h = [ humidity 7!40 conditioning 7!ff airButton 7!ff heating 7!ff ]
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Revisited Smart HVAC system

• After the execution of DecentralizeInvariant(S,I):  

• Rule added to temperature node: 

• Rule added to the heating node:
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invariant). This is done by performing a remote update of the local resource x by

adding a new ECA rule to rule list of the ith node in S (line 8). The added rule

here is a special rule having higher priority, since synchronization updates must

be considered before normal updates. A rule evt � task has the same meaning

of a standard AbU rule evtmtask except for the fact that the AbU semantics will

consider it with higher priority. This would need to add a priority-based update

scheduling mechanism to AbU, as we will see in Section 4.

Coming back to the revisited smart HVAC system introduced at the begin-

ning of the section, by applying Algorithm 1 we obtain the following AbU system.

The resource conditioning is added to the state of the temperature node, and

the resource heating is added to the state of the humidity node. That is:

⌃t = [ temperature 7!19 heating 7!ff conditioning 7!ff ]
⌃h = [ humidity 7!40 conditioning 7!ff airButton 7!ff heating 7!ff ]

Local Reasoning and AbU for Enforcing Global Invariants in CASs 11

Then, synchronization ECA rules are added: one propagating the modifi-

cations of the resource heating from the temperature node to external nodes;

and another propagating the modifications of the resource conditioning from the

humidity node to external nodes. That is, the rule

heating� @(tt) : heating heating (14)

is added to ⌃t and the rule

conditioning� @(tt) : conditioning conditioning (15)

is added to ⌃h. These synchronization rules have higher priority than the rules

already present in the nodes. Finally, to both temperature and humidity nodes

the invariant ¬(conditioning ^ heating) is added.

In the example, the global invariant and the local invariants coincide, but this

is not always the case. Indeed, if the global invariant would have stipulated a

constraint on resources not affecting the humidity and temperature nodes (e.g.,

I = ¬(conditioning^heating)^ (brightness < 125)), then the local invariants on

those nodes and the global invariant would have been different.

4 Priority Scheduling and Correctness Guarantees

In order to enforce a global invariant by enforcing local invariants, updates exe-

cution should respect some priority ordering. Coming again to the revised HVAC

example, when we turn on the air cooling system and, subsequently, we turn on

the heater, we should guarantee that the update (conditioning, tt) is delivered

and executed on all nodes before the update (heating, tt). That is, synchroniza-

tion updates must be executed with higher priority than normal updates.

AbU semantics guarantees atomicity within the discovery phase, i.e., nodes

performing updates cannot be interrupted by discovery from other nodes
5
. This

ensures a causal order for updates delivery (any update execution are delivered

in order to all nodes), but it does not inherently guarantee a specific priority for

update execution. This is because each node relies on its local scheduler to deter-

mine the execution order of the updates in its pool. This design choice in AbU

promotes decoupling the theoretical model from practical implementation con-

cerns. However, it can lead to inconsistencies when updates need to be executed

under a specific priority order to maintain global system property (e.g., a global

invariant). To address this, in this section we propose a scheduling strategy, with

a slight modification of AbU semantics, that enforces priority ordering of update

execution, ensuring consistency and local-to-global invariant enforcement.

4.1 A Scheduling Strategy for Priority Ordering

A simple scheduler guaranteeing priority to synchronization updates can be im-

plemented with a slight modification of AbU semantics. In this case, a node pool

5 This guarantee can be realized by means of distributed transactions, as done in the
implementation available at https://github.com/abu-lang
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under a specific priority order to maintain global system property (e.g., a global

invariant). To address this, in this section we propose a scheduling strategy, with

a slight modification of AbU semantics, that enforces priority ordering of update

execution, ensuring consistency and local-to-global invariant enforcement.

4.1 A Scheduling Strategy for Priority Ordering

A simple scheduler guaranteeing priority to synchronization updates can be im-

plemented with a slight modification of AbU semantics. In this case, a node pool

5 This guarantee can be realized by means of distributed transactions, as done in the
implementation available at https://github.com/abu-lang
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But does it work?

• Yes, if update execution in nodes respect some order 
• Recall (Exec) rule: There is no a priori fixed scheduling policy 

• But synchronization updates must be executed before any other 
pending update in pool, otherwise they can be dropped due to invariant 
invalidation 
• This calls for priority scheduling
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(Exec)

upd 2 ⇥ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
⇥00 = ⇥ \ {upd} X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)}
⇥0 = ⇥00 [ LocalUpds(R,X,⌃0) T = ExtTasks(R,X,⌃0)

R, ◆h⌃,⇥i updBT����_ R, ◆h⌃0,⇥0i

(Exec-F)
upd 2 ⇥ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥0 = ⇥ \ {upd}

R, ◆h⌃,⇥i updB✏���_ R, ◆h⌃,⇥0i

(Input)

v1, . . . , vk 2 V ⌃0 = ⌃[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
⇥0 = ⇥ [ LocalUpds(R,X,⌃0) T = ExtTasks(R,X,⌃0)

R, ◆h⌃,⇥i (x1,v1)...(xk,vk)IT�������������_ R, ◆h⌃0,⇥0i

(Disc)
⇥00 = {JactK⌃ | 9i 2 [1..n] . taski = ' : act ^⌃ |= '} ⇥0 = ⇥ [⇥00

R, ◆h⌃,⇥i task1...taskn�������_ R, ◆h⌃,⇥0i

(StepL)
S1

↵�_ S0
1 S2

T�_ S0
2

S1 k S2
↵�_ S0

1 k S0
2

↵2{updBT,updIT} (StepR)
S1

T�_ S0
1 S2

↵�_ S0
2

S1 k S2
↵�_ S0

1 k S0
2

↵2{updBT,updIT}

Fig. 2. LTS Semantics of the AbU calculus.

LocalUpds(R,X,⌃) , {Jact2K⌃ | 9evtm ' : act2 2 Active(R,X) .⌃ |= '}

ExtTasks(R,X,⌃) , {|task1|}⌃ . . . {|taskn|}⌃ given that:
8i 2 [1..n] 9evtm taski 2 Active(R,X) . taski = @' : act

Active(rule1 . . . rulen, X) , {rulei | 9i 2 [1..n] . rulei = evtm task ^ evt \X 6= ?}

Fig. 3. Discovery functions definition used by AbU calculus semantics.

The AbU semantics also checks the fulfillment of invariants. Indeed, the rule

(Exec) is applied only when the state modified by the update still satisfies the

invariant (i.e., ⌃0 |= ◆); otherwise, rule (Exec-F) is applied. In this case, the

update that would lead to a “bad” state is discarded and removed from the pool.

2.2 CAS Examples in AbU

Drone Swarm Consider a scenario where a swarm of terrestrial drones is in charge

of taking specific measurements, randomly picked in a large uninhabited area.

Each drone is equipped with a battery that periodically needs to be recharged

by returning to a docking station. It may happen that a drone runs out of energy

before returning to the charging spot. In this case, the low-battery drone asks for

help from its neighbors. If a drone has some energy to share and it is close enough

to the requester, it will enter the ‘rescue mode’. We can model this scenario in

AbU as follows (without the energy transfer phase, due to space reasons).

Suppose we have four drones. For each drone we have an AbU node with a

resource battery, indicating the battery level of the drone; a resource position,

indicating where is located the drone; a resource mode, indicating in which

operative state is the drone; and a resource helpPos, indicating the position of



Enforcing Global Invariants with Local Reasoning in AbU                     M. Miculan

LTS semantics with priority

• Labels:  
where P is a list of high priority task 
• (Exec) rules are modified accordingly
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(ExecP)

upd 2 ⇥̂ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)} LocalUpds(R,X,⌃0) = (⇥̂00,⇥00)
⇥̂0 = (⇥̂ \ {upd}) [ ⇥̂00 ⇥0 = ⇥ [⇥00 ExtTasks(R,X,⌃0) = (P, T )

R, ◆h⌃, (⇥̂,⇥)i updB(P,T )������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(Exec)

⇥̂ = ? upd 2 ⇥ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)} LocalUpds(R,X,⌃0) = (⇥̂00,⇥00)
⇥̂0 = ⇥̂ [ ⇥̂00 ⇥0 = (⇥ \ {upd}) [⇥00 ExtTasks(R,X,⌃0) = (P, T )

R, ◆h⌃, (⇥̂,⇥)i updB(P,T )������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(ExecP-F)
upd 2 ⇥̂ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥̂0 = ⇥̂ \ {upd}

R, ◆h⌃, (⇥̂,⇥)i updB(✏,✏)������_• R, ◆h⌃, (⇥̂0,⇥)i

(Exec-F)

⇥̂ = ? upd 2 ⇥ upd = (x1, v1) . . . (xk, vk)
⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥0 = ⇥ \ {upd}

R, ◆h⌃, (⇥̂,⇥)i updB(✏,✏)������_• R, ◆h⌃, (⇥̂,⇥0)i

(Input)

v1, . . . , vk 2 V ⌃0 = ⌃[v1/x1 . . . vk/xk] X = {x1, . . . , xk} ExtTasks(R,X,⌃0) = (P, T )
LocalUpds(R,X,⌃0) = (⇥̂00,⇥00) ⇥̂0 = ⇥̂ [ ⇥̂00 ⇥0 = ⇥ [⇥00

R, ◆h⌃, (⇥̂,⇥)i (x1,v1)...(xk,vk)I(P,T )���������������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(Disc)

⇥̂00 = {JactK⌃ | 9i 2 [1..n] . ˆtaski = ' : act ^⌃ |= '} ⇥̂0 = ⇥̂ [ ⇥̂00

⇥00 = {JactK⌃ | 9i 2 [1..m] . taski = ' : act ^⌃ |= '} ⇥0 = ⇥ [⇥00

R, ◆h⌃, (⇥̂,⇥)i ( ˆtask1... ˆtaskn,task1...taskm)����������������_ R, ◆h⌃, (⇥̂0,⇥0)i

(StepL)
S1

↵�_• S0
1 S2

(P,T )���_• S0
2

S1 k S2
↵�_• S0

1 k S0
2

↵2
(
updB(P,T ),

updI(P,T )

)

(StepR)
S1

(P,T )���_• S0
1 S2

↵�_• S0
2

S1 k S2
↵�_• S0

1 k S0
2

↵2
(
updB(P,T ),

updI(P,T )

)

Fig. 4. LTS Semantics of the AbU calculus with priority.

is modeled as a pair of sets of updates (⇥̂,⇥), instead of a single set of up-

dates. A high priority pool ⇥̂ is devoted to contain high priority updates, while

another pool ⇥ to contain normal updates (i.e., updates with no priority). To

syntactically identify high priority updates, we must add to the AbU syntax high

priority ECA rules denoted evt � task. The meaning of such rules is the same of

standard rules, except for the fact that the updates contained in task will have

high priority. In other words, updates resulting from high priority rules will be

added to the high priority pool, while updates resulting from normal rules will

be added to the normal pool. The AbU semantics scheduler, will first execute all

updates in the high priority pool, and then the remaining no priority updates in

the normal pool. This is formalized by the modified AbU semantic in Figure 4

and the modified discovery function in Figure 5.

When external updates are propagated in the network, the their priority

should maintained. This is done by modifying LTS labels, that now model both

high priority and normal updates. Formally, the AbU semantics with priority is

modeled as a labeled transition system S1
↵�_• S2 whose labels ↵ are now of the

form: (P, T ); upd B (P, T ); or upd I (P, T ). Here (P, T ) is a pair of finite lists
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(ExecP)

upd 2 ⇥̂ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)} LocalUpds(R,X,⌃0) = (⇥̂00,⇥00)
⇥̂0 = (⇥̂ \ {upd}) [ ⇥̂00 ⇥0 = ⇥ [⇥00 ExtTasks(R,X,⌃0) = (P, T )

R, ◆h⌃, (⇥̂,⇥)i updB(P,T )������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(Exec)

⇥̂ = ? upd 2 ⇥ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)} LocalUpds(R,X,⌃0) = (⇥̂00,⇥00)
⇥̂0 = ⇥̂ [ ⇥̂00 ⇥0 = (⇥ \ {upd}) [⇥00 ExtTasks(R,X,⌃0) = (P, T )

R, ◆h⌃, (⇥̂,⇥)i updB(P,T )������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(ExecP-F)
upd 2 ⇥̂ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥̂0 = ⇥̂ \ {upd}

R, ◆h⌃, (⇥̂,⇥)i updB(✏,✏)������_• R, ◆h⌃, (⇥̂0,⇥)i

(Exec-F)

⇥̂ = ? upd 2 ⇥ upd = (x1, v1) . . . (xk, vk)
⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥0 = ⇥ \ {upd}

R, ◆h⌃, (⇥̂,⇥)i updB(✏,✏)������_• R, ◆h⌃, (⇥̂,⇥0)i

(Input)

v1, . . . , vk 2 V ⌃0 = ⌃[v1/x1 . . . vk/xk] X = {x1, . . . , xk} ExtTasks(R,X,⌃0) = (P, T )
LocalUpds(R,X,⌃0) = (⇥̂00,⇥00) ⇥̂0 = ⇥̂ [ ⇥̂00 ⇥0 = ⇥ [⇥00

R, ◆h⌃, (⇥̂,⇥)i (x1,v1)...(xk,vk)I(P,T )���������������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(Disc)

⇥̂00 = {JactK⌃ | 9i 2 [1..n] . ˆtaski = ' : act ^⌃ |= '} ⇥̂0 = ⇥̂ [ ⇥̂00

⇥00 = {JactK⌃ | 9i 2 [1..m] . taski = ' : act ^⌃ |= '} ⇥0 = ⇥ [⇥00

R, ◆h⌃, (⇥̂,⇥)i ( ˆtask1... ˆtaskn,task1...taskm)����������������_ R, ◆h⌃, (⇥̂0,⇥0)i

(StepL)
S1

↵�_• S0
1 S2

(P,T )���_• S0
2

S1 k S2
↵�_• S0

1 k S0
2

↵2
(
updB(P,T ),

updI(P,T )

)

(StepR)
S1

(P,T )���_• S0
1 S2

↵�_• S0
2

S1 k S2
↵�_• S0

1 k S0
2

↵2
(
updB(P,T ),

updI(P,T )

)

Fig. 4. LTS Semantics of the AbU calculus with priority.

is modeled as a pair of sets of updates (⇥̂,⇥), instead of a single set of up-

dates. A high priority pool ⇥̂ is devoted to contain high priority updates, while

another pool ⇥ to contain normal updates (i.e., updates with no priority). To

syntactically identify high priority updates, we must add to the AbU syntax high

priority ECA rules denoted evt � task. The meaning of such rules is the same of

standard rules, except for the fact that the updates contained in task will have

high priority. In other words, updates resulting from high priority rules will be

added to the high priority pool, while updates resulting from normal rules will

be added to the normal pool. The AbU semantics scheduler, will first execute all

updates in the high priority pool, and then the remaining no priority updates in

the normal pool. This is formalized by the modified AbU semantic in Figure 4

and the modified discovery function in Figure 5.

When external updates are propagated in the network, the their priority

should maintained. This is done by modifying LTS labels, that now model both

high priority and normal updates. Formally, the AbU semantics with priority is

modeled as a labeled transition system S1
↵�_• S2 whose labels ↵ are now of the

form: (P, T ); upd B (P, T ); or upd I (P, T ). Here (P, T ) is a pair of finite lists
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(ExecP)

upd 2 ⇥̂ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)} LocalUpds(R,X,⌃0) = (⇥̂00,⇥00)
⇥̂0 = (⇥̂ \ {upd}) [ ⇥̂00 ⇥0 = ⇥ [⇥00 ExtTasks(R,X,⌃0) = (P, T )

R, ◆h⌃, (⇥̂,⇥)i updB(P,T )������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(Exec)

⇥̂ = ? upd 2 ⇥ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 |= ◆
X = {xi | i 2 [1..k] ^⌃(xi) 6= ⌃0(xi)} LocalUpds(R,X,⌃0) = (⇥̂00,⇥00)
⇥̂0 = ⇥̂ [ ⇥̂00 ⇥0 = (⇥ \ {upd}) [⇥00 ExtTasks(R,X,⌃0) = (P, T )

R, ◆h⌃, (⇥̂,⇥)i updB(P,T )������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(ExecP-F)
upd 2 ⇥̂ upd = (x1, v1) . . . (xk, vk) ⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥̂0 = ⇥̂ \ {upd}

R, ◆h⌃, (⇥̂,⇥)i updB(✏,✏)������_• R, ◆h⌃, (⇥̂0,⇥)i

(Exec-F)

⇥̂ = ? upd 2 ⇥ upd = (x1, v1) . . . (xk, vk)
⌃0 = ⌃[v1/x1 . . . vk/xk] ⌃0 6|= ◆ ⇥0 = ⇥ \ {upd}

R, ◆h⌃, (⇥̂,⇥)i updB(✏,✏)������_• R, ◆h⌃, (⇥̂,⇥0)i

(Input)

v1, . . . , vk 2 V ⌃0 = ⌃[v1/x1 . . . vk/xk] X = {x1, . . . , xk} ExtTasks(R,X,⌃0) = (P, T )
LocalUpds(R,X,⌃0) = (⇥̂00,⇥00) ⇥̂0 = ⇥̂ [ ⇥̂00 ⇥0 = ⇥ [⇥00

R, ◆h⌃, (⇥̂,⇥)i (x1,v1)...(xk,vk)I(P,T )���������������_• R, ◆h⌃0, (⇥̂0,⇥0)i

(Disc)

⇥̂00 = {JactK⌃ | 9i 2 [1..n] . ˆtaski = ' : act ^⌃ |= '} ⇥̂0 = ⇥̂ [ ⇥̂00

⇥00 = {JactK⌃ | 9i 2 [1..m] . taski = ' : act ^⌃ |= '} ⇥0 = ⇥ [⇥00

R, ◆h⌃, (⇥̂,⇥)i ( ˆtask1... ˆtaskn,task1...taskm)����������������_ R, ◆h⌃, (⇥̂0,⇥0)i

(StepL)
S1

↵�_• S0
1 S2

(P,T )���_• S0
2

S1 k S2
↵�_• S0

1 k S0
2

↵2
(
updB(P,T ),

updI(P,T )

)

(StepR)
S1

(P,T )���_• S0
1 S2

↵�_• S0
2

S1 k S2
↵�_• S0

1 k S0
2

↵2
(
updB(P,T ),

updI(P,T )

)

Fig. 4. LTS Semantics of the AbU calculus with priority.

is modeled as a pair of sets of updates (⇥̂,⇥), instead of a single set of up-

dates. A high priority pool ⇥̂ is devoted to contain high priority updates, while

another pool ⇥ to contain normal updates (i.e., updates with no priority). To

syntactically identify high priority updates, we must add to the AbU syntax high

priority ECA rules denoted evt � task. The meaning of such rules is the same of

standard rules, except for the fact that the updates contained in task will have

high priority. In other words, updates resulting from high priority rules will be

added to the high priority pool, while updates resulting from normal rules will

be added to the normal pool. The AbU semantics scheduler, will first execute all

updates in the high priority pool, and then the remaining no priority updates in

the normal pool. This is formalized by the modified AbU semantic in Figure 4

and the modified discovery function in Figure 5.

When external updates are propagated in the network, the their priority

should maintained. This is done by modifying LTS labels, that now model both

high priority and normal updates. Formally, the AbU semantics with priority is

modeled as a labeled transition system S1
↵�_• S2 whose labels ↵ are now of the

form: (P, T ); upd B (P, T ); or upd I (P, T ). Here (P, T ) is a pair of finite lists
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Soundness of Decentralized invariants 

• Priority semantics guarantees that local invariants are enough 
for enforcing global invariants
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LocalUpds(R,X,⌃) , (⇥̂,⇥) such that ⇥̂ = {JactK⌃ | 9evt � ' : act 2 Active(R,X) .⌃ |= '}
and ⇥ = {JactK⌃ | 9evtm ' : act 2 Active(R,X) .⌃ |= '}

ExtTasks(R,X,⌃) , ({| ˆtask1|}⌃ . . . {| ˆtaskn|}⌃, {|task1|}⌃ . . . {|taskm|}⌃) given that:
8i 2 [1..n] 9evt � ˆtaski 2 Active(R,X) . taski = @' : act

8j 2 [1..m] 9evtm taskj 2 Active(R,X) . taskj = @' : act

Active(rule1 . . . rulen, X) , {rulei | 9i2 [1..n] . (rulei=evt � task _ rulei=evtm task) ^ evt \X 6=?}

Fig. 5. Discovery functions for the AbU calculus semantics with priority.

of tasks (and upd is an update). In these labels, P represents the list of high

priority updates, while T represents the list of no priority updates.

4.2 Soundness of Local Invariants

Assuming a priority ordering of updates delivery and execution, we can prove

that the enforcing of local invariants, as defined by Algorithm 1, is sufficient

to guarantee the satisfaction of the corresponding global invariant. In other

words, given a global invariant I for the AbU system S, the AbU system S` =
DecentralizeInvariant(S, I) is guaranteed to not violate I, for all its possible

executions. This is done by enforcing all local invariants in S`.

Theorem 1 (Local Invariants Soundness). Let S` be a system obtained

from an AbU system S by decentralizing the invariant I as per Algorithm 1. If

S` satisfies I, then for all S0 reachable from S`, S0 satisfies I.

Proof. Let us consider a (possibly infinite) sequence of transitions S`
↵1�_• S1

↵2�_•

S2 . . . . If the label ↵1 does not contain any high priority task (i.e., ↵1 is of the

form upd B(✏, T )), it means that the update executed at the first step does not

involve any variable of the invariant I, because the only high priority updates

are those generated by the rules added by Algorithm 1. Hence I is still valid for

S1; in this case, we can repeat the argument starting from S1.
Let us consider the case when ↵1 contains some high priority task, i.e., ↵1

is of the form upd B (P, T ) with P non-empty; this means that some variable

of I has been modified at the first step. Let x one of these variables, and let

us consider any node R, ◆ ^ ◆`h⌃, (⇥̂,⇥)i in S1 where ◆` is the part of invariant

added by Algorithm 1. Clearly, its high priority pool ⇥̂ contains (x, v), to update

the local copy of x with the new value. This update can be executed by (ExecP)
because it does not violate neither the local invariant ◆ (since x has been freshly

added to the store ⌃) nor ◆` (otherwise the update would have violated the

invariant on the originating node at S` already). Therefore, the update (x, v) is

executed before any update in ⇥ (due to priority), yielding to state S1, where

the invariant still holds. The same argument can be repeated until all updates

in all high priority pools are executed; this leads to some state Sn, where there

are no further synchronization updates to apply, and invariant I still holds. Now

we can repeat the argument starting from Sn, proving the thesis. ut
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Conclusions

• Global invariants can be implemented by means of local 
invariants, provided that the local execution of updates respect 
priority of synchronization messages 
• Future work: 
• Other kinds of properties, e.g. liveness, fairness, etc. 
• Temporal properties 
• Non-interference 
• Resilience: how to recover an invariant when it fails?



Thanks for your attention!
Questions? 

https://github.com/abu-lang 

https://github.com/abu-lang

