Marino Miculan, Univ. Udine & Venezia marino.miculan@uniud.it

Containers are widely adopted in the Cloud

Containers are increasingly adopted in the
design and implementation of complex

software systems, especially in the Cloud. N N
t Proxy = =P Proxy =P Proxy

Containers are lighter, more efficient 7N\ e ¢ ¢ ¢

. . i } Backend Database
alternative to Virtual Machines Aih >\ Frontend

ser

Support Microservice-oriented architectures: \ -
fine granularity services and components

Simplify horizontal and vertical scalability

AENNENNNNNNNNER Miculan M.

Containers enforce weaker separation than VMs

Applications can be composed by hundreds
or thousands of containers.

A cloud provider often runs many
applications (possibly from different clients)
on the same infrastructure

Connecting and coordinating containers
into a complete working system is not
trivial.

AEENENNNNNNNEER Miculan

Containers enforce weaker separation than VMs

Applications can be composed by hundreds
or thousands of containers.

A cloud provider often runs many
applications (possibly from different clients)
on the same infrastructure

Connecting and coordinating containers
into a complete working system is not
trivial.

Violating security goals and policies
through misconfiguration is easy.

AEENENNNNNNNEER Miculan M.

DBCChecker

We propose DBCChecker, a tool that aims to verify security properties of systems

obtained by the composition of containers. It needs:

a configuration of a container-based system

for each container an abstract description of the interaction on its interface

Global properties to check

RS

System description

DBCChecker

@I

Container contracts

AEENENENNNNNEER Miculan M.

]

Proverif

Bigraphical models of containers

DBCChecker is based on the abstract bigraph based model of container based systems
presented in (Burco, Miculan, Peressotti, ACM SAC 2020), and the JLibBig
implementation of bigraphs.

datavolume

8080 Wp front db back pma 8181

el

80 WP front front db back
/var/www/data

varfwww/data
80 front]T linysat WP 3306 front back db
[L

A i s 2 B et el ilelets e

mysql

T

- Bigraphical models of containers

DBCChecker is based on the abstract bigraph based model of container based systems
presented in (Burco, Miculan, Peressotti, ACM SAC 2020), and the JLibBig
implementation of bigraphs.

front datavolume back pma

8080 wp

,,,,,,,,,,,,

T

JSON Bigraph Format (JBF)

21
Based upon the standard 11 T oureer: vsourconoder,
2 "graph": { 23 "relation": "relation",
JSON Graph Format. 3 et o Vrargetn: "targotiode!
4 "NodeName": { 25 "metadata": {
. 5 "metadata": { 26 "portFrom": "portFrom",
Uses metadata objects to 6 | e "ipe” 27 | "PoRLTO": "portTo"
. . 7 B
describe the signature and 8 "label": "label® 20)
P . 9 } 30 1,
other specific informations of 10 3, 31 "iype": "typer,
. . 11 "edges": [32 "metadata": {
directed bigraphs. 2« 33 vsignature”: [
13 "source": "sourceNode", 34 {
14 "relation": "relation", 35 "name": "name",
An eXtenSion to the JBF 15 "target": "targetNode", 36 "arityOut": 1,
16 "metadata": { 37 "arityIn": 1
specification is needed to v poriEont Tpereiron' 38 :
describe the properties that do 12 7 a
not fit in JGF. 42 3

T

DBCChecker: tool architecture

The Verification module is the main actor and controller of our system, responsible for
the entire verification process.

JLibBig
Core Module | | Verification module }
{| Import/export |' || Network| | Parsing | | Translation 17 S Gul 7] !
} Module || Module | | Module Module | ! Functionality'

Verification Functionality

EEEEEENEENEENEE

A basic example

Let us consider a very simple handshake protocol between two containers, a client A
and a server B, over a shared channel.

Global property to check: confidentiality of s.

clientA | serverB |

clientA #0 serverB - o
K,

[A A S 2 PRy
= |

AEnC(pkA7 Sign(5k57 (pkBu k)))

SEnc(/(, s)

________________________________ '

T

A basic example: contracts

1 "clientA": { 1 "serverB": {

2 "metadata": { 2 "metadata": {

3 "type": "node", 3 "type": "node",

4 "control": "1lonO", 4 "control": "1lon0",

5 "params": ["pkA:pkey", "skA:skey", "pkB:spkey"l, 5 "params": ["pkB:spkey", "skB:sskey"l,

6 "behaviour": "!(out (#0+, pkA); 6 "behaviour": "!(in(#0+, pkX : pkey);
in (#0+, x : b1tstr1ng), new k : key;
let y = adec(x, skA) in out (#0+, aenc(sign((pkB, k), skB), pkX));
let (=pkB, k : key) = checkslg‘n(y, pkB) in in(#0+, x : bitstring);
out (#0+, senc(s, k))) let z = sdec(x, k) in 0)."

7 "attribute": "" 7 "attribute": ""

8 }, 8 T,

9 "label": "clientA" 9 "label": "serverB"

10 } 10 }

T

A basic example: results

Atrace has been found.

Honest Process Attacker

TTnow skA 2|

(2pnew kB 2|

~M = pk(skA 2)

~M 1 = spk(skB 2)

[Beginning of process clientA| [Beginning of process serverB]

~M 2 = pkiskA 2)

pk(a_1)
(7Tnewk 2]
~M3= 2).k 2),5kB 2) pk(a 1),
aenc(adec(~M B,a 1),~M) = aenc(sign((spk(skB_2),
2),5kB 2),pk(skA 2))

~M 4 = senc(s k 2)

[The attacker has the messa

o sdec(~M 4,2-proj-2-tuple(|
3a)=s
I

EEEEEEEEENNENEE

A slightly more advanced example

Two containers are communicating over a private channel.
Global property to check: confidentiality of data.

The system is secure: the network is internal.

i
i

EEEEEENEENNENEE

- A slightly more advanced example

Two containers are communicating over a private channel.
Global property to check: confidentiality of data.

The system is secure: the network is internal. However, if we add e.g. a logger the
property may not be preserved.

client server #1 logger

""" | ol T

EEERENNNNNNNENER Miculan M.

A slightly more advanced example: contracts

"client": {

1 1 " ". {

2 'metadata": { server":

2 "metadata": {

3 "type ": "node" ’ 3 "t e": "node"

4 "control": "1ion0", ype : ’

" iaah 4 "control": "ion0",

5 properties": { 5 noropersies: {

6 "params": [], prop .

s 6 "params": [],

7 "behaviour": "new > X
data:bitstring; out(#0- 7 "behaviour": "in(#0-,
datai N g: ou ’ data_received:bitstring).",

8 "events": []’ ’ 8 "events": [I,
- ’ 9 "attribute": ""

9 "attribute": ""

10 }
10 }

11 3,
11 }, " n.eon "
12 "label": "client" 12 label": "server
13 1}, 13 1},

EEEEENNEENNENEE

A slightly more advanced example: contracts

10

12
13

"client": {
"metadata": {
"type": "node",
"control": "1lonO",

"properties": {
"params": [],

"behaviour": "new
data:bitstring; out(#0-,
data).",

"events": [],

"attribute": ""

}
},

"label": "client"

NoOOhsWNH

©

10
11
12
13

"server": {
"metadata": {
"type": "node",
"control": "1lonO",
"properties": {
"params": [],
"behaviour": "in(#0-,
data_received:bitstring).",
"events": [1,
"attribute": ""
}
3,
"label": "server"

3,

NoOoOhsWNH

10
11
12

"logger": {
"metadata": {
"type": "node",
"control": "2o0n0",

"properties": {

"params": [],

"behaviour": "in(#0-,
data_toLog:bitstring);
out (#0-, data_toLog);
out (#1+, data_toLog).",

"events": [1,

"attribute": ""

}
3,
"label": "logger"
},

EEEEEENEENNRNEE

A slightly more advanced example: results

A trace has been found.

Honest Process

inning of process behaviour_clien(|

Attacker

T
Beginning of process behaviour_logger] i

(4)new data_1

ing of process behaviour_server

~M = data_l

The attacker has the message ~M = data_1

T

- What we have done

Introduced JBF, a specification language
for containerized architectures based on
bigraphs.

Introduced DBCChecker, a tool to verify
security properties of systems obtained by
composition of containers.

DBCChecker builds a model of the overall
system, which can be verified in ProVerif,
to check the satisfaction of the required
properties.

EEERRNENNNNNENER Miculan M.

-

Extending the specification language to support other properties: e.g. temporal logics,
other backends. ..

Simplifying the user interaction with the system: the implementation of a GUI could be
a major step towards a complete and user-friendly toolkit.

Integrate the system with a network discovery tool, in order to simplify the process of
modelling and verifying large and dynamic containers based systems.

Integrate within the SECCO pipeline.

T

- Thanks for your attention

Try DBCChecker on GitHub

-

@7 g‘i@
e) ¥

Marino Miculan
University of Udine & Ca' Foscari University of Venezia
marino.miculan@uniud.it

EERRRNNNNNNNNED Miculan M.

