A bigraph-based Formal Model
and Verification Framework
for Container-Based Systems

Marino Miculan
DMIF, University of Udine

IT University of Copenhagen
December 10, 2024

mailto:marino.miculan@uniud.it

A Formal Model for Container-Based Systems Marino Miculan

Microservice-oriented architectures and containers

* Microservice-oriented architecture

>~ Modern applications are built by composing
microservices through interfaces

> Distributed, component-based

> Flexible, scalable, supporting dynamic
deployment and reconfiguration, agile
programming, etc.

* Containers are widely used for implementing
Microservices-oriented architectures

> Lighter than virtual machines 2
~ Clear definition of interfaces | Dockerkngine
> Can be composed Host 0S

Recommendation
Senice
(MongoDB)

Analysis
Service

(Spark)

Container -

Server

A Formal Model for Container-Based Systems Marino Miculan

Vertical vs Horizontal Composition

« Containers can be composed to
form larger systems

& & &
* Two different compositions: G PH! =

NG redis

 Vertical*: containers can be (80 (6379)
filled with application N
specific code, processes... MysoL

and containers can be put (3306)

inside pods

&
- Horizontal*: containers are fi : ﬁ & B

on a par, and communicate hred
through channels (sockets, volume)
APIl), volumes, networks

* = my naming, not official

Elasticsearch — Logstash — Kibana (81)

A Formal Model for Container-Based Systems Marino Miculan

Composition of containers

services: pma:

® COmpOSlthn]S deflned by YAML flleS Wp: image: phpmyadmin/phpmyadmin
: image: wordpress links:
deClar]ng linf{s: ’ - db:mysql
* (Virtual) Networks bortes PO ot on
« Volumes (possibly shared) novworks: T mtavolume /data
. - front networks:
* For each container volumes: - back
- datavolume:/var/www/data:ro networks:
) Name db: front:
image: mariadb driver: bridge
° expose: back:
Images I-) "3306" driver: bridge
« Networks which are connected to metueTe. T .
. . - back external: true
* Port remapping for exposed services
* Volumes

Links between services

 Configuration file is fed to a tool (docker
compose) which downloads the images,
creates the containers, the networks, the
connections, etc. and launches the system

A Formal Model for Container-Based Systems Marino Miculan

What if a composition configuration is not correct?

front back

Let’s save
passwords in
/data/passwd

errors, which may lead to problems
Where are pma Oops! I'm leaking -
P etwork
network

during composition, or (worse) at
runtime. E.g.:
« A container may try to access a
 Security policies violations, e.g. sharing networks or volumes which
should not (or only in a controlled way) leading to information leaks
 Dynamic reconfiguration can break properties previously valid

» A configuration may contain several .
missing services, or a service
which is not connected to by a
« Container’s images can be updated at runtime (e.g. for bug fixing)
» Adding or removing containers to an existing and running system

A Formal Model for Container-Based Systems Marino Miculan

Solid tools need solid theoretical foundations

* We need tools for analyzing, verifying (and possibly manipulate) container
configurations, before executing the system (static analysis), or at runtime

* We need a formal model of containers and services composition
 This model should support:

« Composition and nesting of components

« Dynamic reconfiguration

« Different granularities of representation

* Flexibility (can be adapted to various aspects)

* Openness (we may need to add more details afterwards)

A Formal Model for Container-Based Systems Marino Miculan

Solid tools need solid theoretical foundations

* We need tools for analyzing, verifying (and possibly manipulate) container
conﬁguratlons before executing the system (statlc analygar at runtime

° We need 2

» Flexibility (can be adapted to various aspects)
* Openness (we may need to add more details afterwards)

A Formal Model for Container-Based Systems

Quick intro to bigraphs [Milner, 2003]

Marino Miculan

A bigraph consists of hyperedges and nodes that can be nested.
Each hyperedge can connect many ports on different nodes.

bigraph
G: (m, X)—=(n,Y)

place graph

GY:m—n

roots ... 0 1

sites ... 0 1

link graph
Gt X =Y

...outer names

...1lnner names

A Formal Model for Container-Based Systems Marino Miculan

Local direct bigraphs [Burco, Peressotti, M., ACM SAC 2020]

* For containers, we have introduced
local directed bigraphs, where

* Nodes have assigned a type,
specifying arity and polarity
(represented by different
shapes) and can be nested

* Sites represent “holes” which
can be filled with other bigraphs

* Arcs can connect nodes to nodes
(respecting polarities) or to
names in internal and external
interfaces (with locality) Internal Interface

A Formal Model for Container-Based Systems Marino Miculan

Local directed bigraphs — more formally

* A (polarized) interface (with localities) is a list of pairs of finite
sets of names

[Global names Local names (a pair for each locality) }

X : <(X(—)|_7X0_)7(Xi|_7X1_)77(X7—1F7X7;)>

XtTE2HX X 2WHX, width(X)£n

/\ =1 /\ 1=1

[Ascending names } [Descending names }

* Interfaces can be juxtaposed:

X®Y 2 ((Xg WYy, Xo WYy), (X, X)), (X0, X)), (VY), (Y, Y)

m»—m

A Formal Model for Container-Based Systems Marino Miculan

Local directed bigraphs — more formally

* A signature K = {c,c,, ...}is a set of controls, i.e. pairs ¢; = (n",n;,)

« Each control is the type of basic components, specifying inputs
(positive part) and outputs (negative part)

* Notice: direction of arrows represents
“access” or “usage”, not “information flow”
(somehow dual to string diagrams for monoidal cats)

 Figure aside: a graph representing a system
that accesses to some internal service over X,
some external service over z,
and provides services over X,y

|

|

A Formal Model for Container-Based Systems Marino Miculan

Local directed bigraphs — more formally

* A signature K = {c¢,,¢,, ...}is a set of controls, i.e. pairs ¢, = (n;",n~

l

 Given two interfaces I, O, a local directed bigraph B : I — O is

a tuple
B = (V,E, ctrl, prnt, link)
where

e V = finite set of nodes
* E = finite set of edges

* ctrl : V — K = control map: assigns each node a type, that is
a number of inward and outward ports

* prnt: tree-like structure between nodes

* [ink: directed graph connecting nodes’ ports and names in
interfaces (respecting polarity)

A Formal Model for Container-Based Systems Marino Miculan

Local directed bigraphs — more formally

 Let K be a fixed signature, and X, Y, Z three interfaces.
» Given two bigraphs B, : X - Y,B,: Y — Z, their composition is
Byo B, = (V,E,ctrl,prnt,link) : X - Z
defined by “filling the holes and connecting the wires” as expected

* Yields a monoidal category (Ldb(K),®,0)

* Objects: local directed interfaces
* Arrows: local directed bigraphs
 Tensor: juxtaposition
* Enjoys nice properties of bigraphs (RPOs, IPOs, etc.)

A Formal Model for Container-Based Systems

A signature for containers

 Controls to represent main elements of a container

Read Write
e /><\§ %
Kcont = $ @ ? f neItTtork

5 | process volume
request .
container

 shapes are only for graphical rendering
* (nodes are subject to some sorting conditions)

e Can be extended with other controls as needed
(achieving flexibility and openness)

« Changing signature = change of base in fibred category

Marino Miculan

A Formal Model for Container-Based Systems Marino Miculan

Containers are local directed bigraphs

* Container = ldb whose o e o
interfaces contain the R D o
name of the container, the VYolume-..... :
exposed ports, required |

volumes and networks, Processes:-s: e+ f:::

etc. Nk

* This is not only a picture,
but the graphical
representation of two
interfaces and a morphism ;
in the category Ldb(Kcont) Y

"+ Nets

Contéi’;wer
B . <({ }9 {})’ ({Sla S2’ lina lén}’ {rl})> — <({ }9 {}7 ({I’ll,l’l2, Vv, lloms ZQOW}a {p19p29p39 C}))>

A Formal Model for Container-Based Systems Marino Miculan

And composition is another bigraph itself

« Composition of containers (as datavolume
done by docker-compose) = w0 front.
composition of corresponding ke /T
bigraphs inside a deployment | .
bigraph specifying volumes,
networks, name and port
remapping, etc.

* Encoding is “functorial”

A Formal Model for Container-Based Systems

And composition is another bigraph itself

« Composition of containers (as
done by docker-compose) =
composition of corresponding
bigraphs inside a deployment
bigraph specifying volumes,
networks, name and port
remapping, etc.

* Encoding is “functorial”

* The deployment bigraph is
obtained automatically from
the YAML configuration file

8080 wp

front datavolume back

Marino Miculan

A Formal Model for Container-Based Systems Marino Miculan

Application: safety checks on the configuration

When represented as bigraphs,

datavolume

systems can be analysed using tools oo font
and techniques from graph theory e /T

Slmple example: i T

T . e e
 Valid links: “if a container has a y front b back R
link to another one, then the two
containers must be connected by at
least one network” '

* Corresponds to a simple
constraint on the deployment 1
bigraph v v

__

A Formal Model for Container-Based Systems Marino Miculan

Application: Network separation (no information leakage)

« assume that networks (or volumes) have assighed different security
levels (e.g “public < guests < admin”, “back < front”).

* Security policy we aim to guarantee:
* “Information from a higher security network cannot leak into a
lower security network, even going through different containers”

front > back

front datavolume back pma

8080 wp

A Formal Model for Container-Based Systems Marino Miculan

Application: Safe network separation

« Can be reduced to a reachability problem on an auxiliary graph representing read-
write accessibility of containers to resources

* The r/w accessibility graph is easily derived from the bigraph of the system

 Security policy is reduced to the property: “For each pair of resources m, n such that
n < m, there is no directed path from n to m” (i.e., n cannot access m)

* |If this is the case, the configuration respects the security policy. Otherwise, an
information leakage is possible

8080 wp

front > back

fyont datavolume back

front datavolume back

PaWN

pma

A Formal Model for Container-Based Systems Marino Miculan

DBCChecker [Altarui, M., Paier, ITASEC 2023] .
A tool aiming to verify security properties of systems A

obtained by composition of containers [I I"]ll II II ﬂ[”l

DB C
CHECKER

QEes éﬁ@
o, R
CprsEe]

*

A Formal Model for Container-Based Systems Marino Miculan

DBCChecker

* Input:
 a configuration of a container-based system (in JBF - JSON Bigraph Format)

 for each container, an abstract description of the interaction on its
interface (“contract”)

» Global properties to be checked
» Output: a model for the global system, verifiable in some backend

(Global properties to check

Bigraphs are
BN ! used inside here
L) Z
System description AN _ _’[OK]
DBCChecker » v » Proverif

Fﬁl —>[KO, trace ’

Container contracts

A Formal Model for Container-Based Systems Marino Miculan

A basic example: secure handshake

* Two containers, “client” and “server”
 Global property to check: confidentiality of message s

clientA #0 serverB clientA serverB
PR AT —

________________________________ SEnC(/f, s)

A Formal Model for Container-Based Systems Marino Miculan

>
o

asic example: secure handshake: contracts

clientA #0 serverB

I "clientA": { . "serverB": {
2 "metadata": { 5 "metadaéa“' f
3 "type ! : "nOde " 2 3 llt e" . I;node n
4 "control": "1lonO", ; ypt .l"' " ’O"
5 "params": ["pkA:pkey", "skA:skey", + contro. onv
"pkB : spkey"] S "params": ["pkB:spkey", "skB:sskey"],
° ’ n : ne my (4 + : .
6 "behaviour": "!(out (#0+, pkA); 6 behav;zﬁrk . kg;ﬁ(#o » PKX & pkey);
in (#0+, x : bitstring); out (#0+, aenc(sign((pkB, k), skB),
let y = adec(x, skA) in ‘ PkX)) ;
let (fpkB, k : key) = checksign(y, in(#Ol, x : bitstring);
pkB) in let z = sdec(x, k) in 0).",
out (#0"‘, senc (s s k)))." s 7 "attribute": ""
7 "attribute": "" g }
8 ¥, . 9 "label": "serverB"
9 "label": "clientA"
10 }
10 }

A Formal Model for Container-Based Systems Marino Miculan

>
o

asic example: secure handshake: analysis result

A trace has been found.

CI e ntA server B Honest Process Attacker

B L N

{1}new skA 2
{2}new skB 2

~M = pk(skA 2)

~M 1 = spk(skB 2)

................................ - — 0

Beginning of process clientA| [Beginning of process serverB|

clientA serverB ~M 2 = pk(skA 2)
- - pk(a_1)
Pk 4
{17}new k 2
ok,)

; k
AEnC(pkA7 S@QTL(S B ~M_3 = aenc(sign((spk(skB 2),k 2),skB 2),pk(a_1))

aenc(adec(~M B,a 1),~M) = aenc(sign((spk(skB 2),
SEnC(/g s) K 2),skB_2),pk(skA_2))

— Sty

L L ~M 4 = senc(s,k 2)

The attacker has the message sdec(~M_4,2-proj-2-tuple(
getmess(adec(~M _3,a_1)))) = s

A Formal Model for Container-Based Systems

A slightly more advanced example: reconfiguration

 Two containers are communicating over a private channel.
 Global property to check: confidentiality of data.
* The system is secure (because the network is internal).

client server

Marino Miculan

A Formal Model for Container-Based Systems

A slightly more advanced example: reconfiguration

 Two containers are communicating over a private channel.
 Global property to check: confidentiality of data.
* The system is secure (because the network is internal).

 But if we add another container, the property may not be
preserved

client server #1 logger

Marino Miculan

A Formal Model for Container-Based Systems Marino Miculan

Reconfiguration: contracts

client server

"client":
{ "server": {

I
n ". 1

; mf:;ﬁzfé Jn:ae" 2 "metadata": {

4 "contrc;l": "101’10", 3 "type": "node",

5 "properties": { 4 "control": "lonO",

6 "params": [] 5 "properties": {

7 "behaviour“:’"new 6 "params": [],
data:bitstring; 7 "behaviour": "in(#0-,
out(#o- data§," data_received:bitstring).",

8 "events": [],’ o "events": [],

9 "attribute": "" 9 "attribute": ""

10 T 10 }

1I } 11 },

. "iabe1"° nelient" 2 "label": "server"

: L

1
3}, }

A Formal Model for Container-Based Systems

Reconfiguration: contracts

N Nk BN

O o0

I0
11
I2

13

"client": {
"metadata": {
"type": "node",
"control": "1omnO",
"properties": {
"params": [],
"behaviour": "new
data:bitstring;
out (#0-, data).",
"events": [],
"attribute": ""
}
}’
"label":
},

"client"

client server #1 logger

Marino Miculan

I
2
1 "server": { 3
2 "metadata": { 4
3 "type" : "node", 5
4 "control": "1onO", 6
5 "properties": { 7
6 "params": [],
7 "behaviour": "in(#0-,
data_received:bitstring).",
8 "events": [],
9 "attribute": ""
10 } 8
1 }, 9
12 "label": "server" 10
13}, II
12

3

"logger": {
"metadata": {
lltype n . Ilnode n ,
"control": "20mn0",
"properties": {
"params": [],
"behaviour": "in(#0-,
data_toLog:bitstring)
out (#0-,
data_toLog) ;
out (#1+,
data_toLog) .",
"events": [],
"attribute": ""
}
} b
"label": "logger"
} b

A Formal Model for Container-Based Systems Marino Miculan

Reconfiguration: analysis result

A trace has been found.

Honest Process Attacker

B

— . Beginning of process behaviour_client — ,
Beginning of process behaviour_logger Beginning of process behaviour_server
{4}new data_1

data_1

data_1

~M =data_1

() The attacker has the message ~M = data_1

A Formal Model for Container-Based Systems Marino Miculan

Conclusions: some future work

» Formalisation of other static properties (Spatial logics?)

» Consider dynamics and temporal properties - in particular, system
reconfiguration

* Integrate with runtime monitoring

* If we observe something unexpected, is it an error, or
reconfiguration?

» Quantitative aspects (e.g. fault probability estimation)

 Configuration synthesis or refinement (e.g. by rewriting rules which fix
security policy violation)

 Session types for specifying contracts
 Improve tools, Ul/UX

A Formal Model for Container-Based Systems Marino Miculan

.5 B

marino.miculan@uniud.it

mailto:marino.miculan@uniud.it

A Formal Model for Container-Based Systems Marino Miculan

Container system evolution: by means of rewriting rules

« Connections and positions of elements of a system can change at
run-time (connections, services requests between processes...)

* A LDB Reactive System (LDBRS) is defined by a set of rules
« Example: connection request / connection accepted

A Formal Model for Container-Based Systems

What about dynamic properties? Two kinds

* During a system’s execution:
usual temporal (liveness,
fairness) properties, e.g.

« Eventual success of service
request

« Temporal security
guarantees, eg: “if a process
reads from X then it cannot
write on any Y whose security
level is less than X’s”

* During a system’s lifecycle:
properties about reconfigurations

« Horizontal scalability

« Container replacement / update
(e.g. library/code upgrade)

 |f some unreliable code is
added to a container, we
have to keep it under
surveillance

« “Temporal” safety invariants =
stability under reconfiguration

Bigraphic models can represent both kinds of evolutions by means of rewriting rules

Marino Miculan

