
Local Reasoning and Attribute-Based
Memory Updates for Enforcing Global

Invariants in Collective Adaptive Systems

Michele Pasqua1(B) and Marino Miculan2

1 Department of Computer Science, University of Verona, Verona, Italy
michele.pasqua@univr.it

2 Department of Mathematics, Computer Science and Physics, University of Udine,
Udine, Italy

marino.miculan@uniud.it

Abstract. We address the problem of enforcing global invariants, i.e.,
system-level properties, in Collective Adaptive Systems, such as dis-
tributed and decentralized Internet of Things (IoT) solutions. In par-
ticular, we propose a novel approach adopting Attribute-based memory
Updates (AbU), a calculus modeling declarative, event-driven systems
with attribute-based communication.

Our methodology leverages a combination of precise node-level
scheduling and local reasoning, with local invariants derived from the
system-level property to guarantee. This distributed and decentralized
approach promotes efficient enforcing while ensuring desired system-wide
behavior, without the need for a central controlling authority.

Keywords: Autonomic systems · Distributed verification · ECA rules

1 Introduction

Pervasive systems, like the Internet of Things (IoT), smart homes, and
autonomous agents, present unique challenges due to their inherent complexity,
being characterized by distributed computing, dynamic network structures, con-
text awareness, and real-time data processing. To address this complexity, the
paradigm of event-driven programming has emerged, since it aligns well with
the reactive nature of pervasive systems which constantly interact with their
environment through events like sensor readings or actuation commands [10,12].

Event Condition Action (ECA) languages represent an intuitive, yet pow-
erful, paradigm for programming reactive systems. The fundamental construct
of ECA languages are rules of the form “on Event if Condition do Action”
which means: when Event occurs, if Condition is verified then execute Action.
ECA systems receive inputs (as events) from the external environment and react
by performing internal actions, updating the node’s local memory, or external
actions, which influence the environment itself. Due to their reactive nature,
c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
T. Margaria and B. Steffen (Eds.): ISoLA 2024, LNCS 15220, pp. 351–367, 2025.
https://doi.org/10.1007/978-3-031-75107-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75107-3_21&domain=pdf
http://orcid.org/0000-0002-9475-4836
http://orcid.org/0000-0003-0755-3444
https://doi.org/10.1007/978-3-031-75107-3_21

352 M. Pasqua and M. Miculan

ECA languages are well-suited for programming smart systems, in particular in
IoT scenarios [10,12]. Indeed, this paradigm can be found, often under the name
of trigger-action platforms, in various commercial IoT frameworks like IFTTT,
Samsung SmartThings, Microsoft Power Automate, Zapier, to name a few.

Despite the actual underlying infrastructure of most pervasive systems (e.g.,
IoT solutions) is strongly centralized, the ever-growing increase of such systems
size, in terms of number of components, clearly advocates for a decentralized
settings, due to evident scalability issues. This poses systems like IoT solutions
closer to the computation paradigm of a Collective Adaptive System (CAS), that
is decentralized in nature. In CASs, a large number of agents autonomously inter-
act in pursuit of an individual or collective goal, where the behavior of the sys-
tem arises as an emergent property of the collective intelligence. This paradigm
shift has been recently performed by the introduction of Attribute-based mem-
ory Updates (AbU) [17,20], a communication mechanism designed for reactive
and decentralized programming, derived from Attribute-based Communication
(AbC) [1,2]. In this model, nodes (e.g., IoT devices) can directly communicate
with each other and self-coordinate, in a truly decentralized setting, without the
need of a central entity. AbU also retains the programming simplicity of ECA
rules, by casting the AbC communication model to a declarative, event-driven
setting. In particular, in AbU an event on a node can cause the update of the
states of (possibly many) remote nodes, selected “on the fly” by means of ECA
rule conditions. For instance, the following rule:

login ! @(role = ‘logger’) : log ← log · time

means “when the (local) variable login changes, on every node whose role is
‘logger’ append my current (local) time to the (remote) variable log”. Therefore,
AbU allows to propagate effects to collections of nodes at once, abstracting from
their identities (or even their existence), in a pure CAS fashion.

As a downside, the absence of a central entity makes challenging to enforce
correctness guarantees (e.g., functional or safety properties) of the whole decen-
tralized IoT system or to retrieve emerging properties of CASs. In this respect,
AbU nodes come with local invariants [21], that is, properties of single nodes that
are automatically enforced by AbU semantics. Nevertheless, ensuring system-
wide properties for AbU is far from trivial. In this paper, we propose an approach
purely based on AbU nodes local reasoning to enforce AbU global invariants, that
is, properties over the whole AbU system. By exploiting attribute-based memory
updates, such a system-level invariant is enforced without resorting to a central
authority. In particular, by projecting the global invariant into an ensemble of
local invariants, the enforced-by-design local invariants of AbU nodes guaran-
tee the fulfillment of the system-wide property, when a suitable distribution of
knowledge is adopted. The latter, is modeled by means of AbU memory updates,
the distinctive synchronization primitive of AbU which does not hinder decen-
tralization and node anonymity.

Synopsis. In Sect. 2 we recall AbU, an ECA-inspired calculus with attribute-
based memory updates well suited for modeling Collective Adaptive Systems.

Local Reasoning and AbU for Enforcing Global Invariants in CASs 353

Fig. 1. Grammar of ECA rules in the AbU calculus.

In Sect. 3 we define system-level invariants in AbU, and we provide a syntactic
transformation of AbU code adding node-level invariants that, under specific
assumptions, imply the system-level one. In Sect. 4 we show that if the local
schedulers respect some priority policies, the enforcing of node-level invariants
guarantees the enforcing of a system-level invariant. Finally, Sect. 5 recalls some
related work and presents directions for future work.

2 Attribute-Based Memory Updates and CASs

2.1 The AbU Calculus

AbU [17,20] is a calculus merging the programming simplicity of ECA rules with
attribute-based memory updates, a powerful distributed communication mech-
anism inspired by attribute-based communication [3]. AbU’s communication
mechanism allows a node to update at once the states of many nodes, which are
selected by means of their attributes without the need for central coordination
and a shared knowledge about network topology. In AbU nodes are programmed
by using Event-Condition-Action (ECA) rules, a powerful yet intuitive coding
style particularly adopted in the IoT. Indeed, AbU turns out to be well suited
for the IoT and, more generally, in collective adaptive systems.

In addition, the calculus has been extended in [21] with node invariants,
namely predicates on each node’s state which must be always satisfied during
execution. This is useful to avoid erroneous or dangerous states, like inconsistent
or out-of-range values, and forbidden trajectories in planning.

An AbU system S is basically a list of nodes which execute in parallel:

S ::= R, ι⟨Σ,Θ⟩ | S ∥ S

Each node R, ι⟨Σ,Θ⟩ consists of: a set R of ECA rules; an invariant ι, namely
a boolean expression that the node must satisfy at runtime; a state Σ ∈ X −→ V,
mapping resources x ∈ X to values v ∈ V; an execution pool Θ ⊆ (X×V)∗, that
is a set Θ = {upd1, . . . , updn} of lists of pairs of the form ((x1, v1) . . . (xm, vm)).
Each list, called an update, represents a simultaneous multiple update waiting
to be applied to the state. In the following we will denote the set of updates as

354 M. Pasqua and M. Miculan

U = (X×V)∗ =
⋃

i∈N(X×V)n. When a node has no invariant, that is equivalent
to have ι = tt, we simply write R⟨Σ,Θ⟩ instead of R, tt⟨Σ,Θ⟩.

An AbU rule is defined by the grammar1 in Fig. 1. Each ECA rule evt! task
has an event evt, which is a list of resources the rule is listening on: when one
of the resources in evt is modified, the rule is fired, namely rule’s tasks task are
evaluated. Evaluation does not change the resource states immediately; instead,
it yields update operations which are added to the execution pools, and applied
later on. A task consists in a condition cnd and an action act. A condition
is a boolean expression, optionally prefixed with the modifier @: when @ is
not present, the task is local ; otherwise the task is remote. In local tasks, the
condition is checked in the local node and, if it holds, the action is evaluated. For
remote tasks, on every node where the condition holds, the action is evaluated.
An action is a list of assignments of value expressions to local x or remote x
resources. The evaluation of an action yields an update, which is added to the
current node pool in the case of local tasks; and added to remote nodes pools in
the case of remote tasks.

AbU semantics is modeled as a labeled transition system S1
α−! S2 whose

labels α are given by the grammar α ::= T | upd ◃ T | upd " T . Here, T is a
finite list of tasks and upd is an update. A transition can modify the state and
the execution pool of the nodes but, at the same time, each node does not have
a global knowledge about the system. Figure 2 depicts the transition semantic
rules of AbU. Rule (Exec) executes an update picked from the pool; while rule
(Input) models an external modification of some resources. The execution of an
update, or the external change of resources, may trigger some rules of the nodes.
Hence, after updating a node state, the node launches a discovery phase, for
finding new updates to add to the local pool (or some pools of remote nodes),
given by the activation of some rules.

The discovery phase is composed by two parts, the local and the external
one. A node R, ι⟨Σ,Θ⟩ performs a local discovery by means of the functions
LocalUpds, that add to the local pool Θ all updates originated by the activation
of some rules in R. Then, by means of the function ExtTasks, the node computes
a list of tasks that may update external nodes and sends it to all nodes in the
system2. External task spreading is modeled with the labels upd ◃T , produced
by the rule (Exec), and upd "T , produced by the rule (Input). When a node
receives a list of tasks (executing the rule (Disc) with a label T) it evaluates
them and adds to its pool the actions generated by the tasks whose condition
is satisfied. The rules (StepL) and (StepR) (to enforce symmetry) complete
and synchronize (on all nodes in the system) a discovery phase originated by
a state change of a node in the system. Updates in the pools are consumed
asynchronously, but communication between nodes is synchronous.

Note that, despite the choice of which node should perform an update is non-
deterministic, when a node actually performs an update, the remaining nodes
wait for the completion of the discovery phase, which propagates the effects of

1 The syntactic category for invariants ι will be introduced in Sect. 3.
2 We refer to [17] for the formal definition of LocalUpds and ExtTasks.

Local Reasoning and AbU for Enforcing Global Invariants in CASs 355

the update through transactional communication. This transactional execution
model of course introduces communication overhead, but this is unavoidable in
a truly decentralized setting. We refer to [18] for some implementation details.

The AbU semantics also checks the fulfillment of invariants. Indeed, the rule
(Exec) is applied only when the state modified by the update still satisfies the
invariant (i.e., Σ′ |= ι); otherwise, rule (Exec-F) is applied. In this case, the
update that would lead to a “bad” state is discarded and removed from the pool.

Fig. 2. LTS Semantics of the AbU calculus.

2.2 CAS Examples in AbU

Terrestrial Rover Swarm. Consider a scenario where a swarm of terrestrial rovers
is in charge of taking specific measurements, randomly picked in a large unin-
habited area. Each rover is equipped with a battery that periodically needs to
be recharged by returning to a docking station. It may happen that a rover runs
out of energy before returning to the charging spot. In this case, the low-battery
rover asks for help from its neighbors. If a rover has some energy to share and
it is close enough to the requester, it will enter the ‘rescue mode’ which starts a
rover-to-rover charging protocol. We can model this scenario in AbU as follows
(without the energy transfer phase, due to space reasons).

Suppose to have four rovers. For each rover we have an AbU node with a
resource battery, indicating the battery level of the rover; a resource position,
indicating the rover position; a resource mode, indicating in which operative
state is the rover; and a resource helpPos, indicating the position of a rover that
needs help. Formally, the AbU system modeling the rover-swarm scenario is

S = R⟨Σ1,∅⟩ ∥ R⟨Σ2,∅⟩ ∥ R⟨Σ3,∅⟩ ∥ R⟨Σ4,∅⟩

356 M. Pasqua and M. Miculan

where R contains, among the others, the following two AbU rules:

battery ! @(battery < 5 ∧ battery > 80) : helpPos ← position (1)
helpPos ! (|position − helpPos| < 7.0) : mode ← ‘rescue’ (2)

Now suppose that the execution states of the rovers are the following:

Σ1 = [battery +→4 position +→2.0 mode +→ ‘measure’ helpPos +→0.0]
Σ2 = [battery +→81 position +→15.0 mode +→ ‘measure’ helpPos +→0.0]
Σ3 = [battery +→97 position +→6.0 mode +→ ‘measure’ helpPos +→0.0]
Σ4 = [battery +→65 position +→8.0 mode +→ ‘measure’ helpPos +→0.0]

The rule (1) says that when the current rover battery level is low (i.e.,
battery < 5), then the current rover has to send to all neighbors with some
energy to share (i.e., battery > 80) its position, performing a remote update:
helpPos ← position. In the example, the first rover can fire the rule (1), since
its battery level is low. Then, it pre-evaluates the task condition, yielding
4 < 5 ∧ battery > 80, which is sent to the other rovers, together with the
pre-evaluation of the task action, i.e., helpPos ← 2.0. Among all receivers, only
the second and the third rovers are interested in the communication, since they
are the only with battery level greater than 80. So they both add to their pool
the update (helpPos, 2.0). This ends the discovery phase originated by the first
rover.

The rule (2), instead, is fired when a rover receives a help request (i.e., when
its resource helpPos changes) and basically checks if the current rover position is
close to the requester position (i.e., |position − helpPos| < 7.0). If it is the case,
the current rover enters the rescue mode performing a local update: mode ←
‘rescue’. In the example, when the second and the third rovers execute the update
(helpPos, 2.0), the task of the rule (2) may be executed. For the second rover
this does not happen, since |15.0 − 2.0| < 7.0 does not hold (the rover is too
far from the first one). Instead, |6.0 − 2.0| < 7.0 holds and the third rover can
execute the rule task, adding to its pool the update (mode, ‘rescue’).

Smart HVAC System. In this example, we provide an AbU implementation of
a Heating, Ventilation and Air Conditioning (HVAC) system, that makes use of
device invariants, namely local invariants on single nodes. In this scenario we
have three devices connected through a network: the HVAC control system, a
temperature sensor, and a humidity sensor. To distinguish the devices, a logical
resource node is used, which takes the values ‘system’, ‘tempSens’ and ‘humSens’
on the HVAC control system, the temperature sensor and the humidity sensor,
respectively. We model such scenario in AbU as follows. The execution state for
the HVAC control system is:

Σs = [heating +→ff conditioning +→ff temperature +→0
humidity +→0 airButton +→ff node +→ ‘system’]

Local Reasoning and AbU for Enforcing Global Invariants in CASs 357

while its ECA rules Rs are:

temperature ! (temperature < 18) : heating ← tt (3)
temperature ! (temperature > 27) : heating ← ff (4)
airButton ! (airButton = tt) : conditioning ← ff (5)
humidity temperature!

(2 + 0.5 ∗ temperature < humidity ∧ 38 − temperature < humidity) :
conditioning ← tt

(6)

The HVAC control system activates heating and air conditioning according to
the values of temperature and humidity, received by the sensors. In particular,
when the temperature is lower than 18◦C (i.e., temperature < 18) the rule
(3) activates the heating with the update: heating ← tt. Instead, when the
temperature is greater than 27◦C (i.e., temperature > 27), then the rule (4)
deactivates the heating with the update: heating ← ff. The air conditioning is
turned on (with the update conditioning ← tt), by means of the rule (6), when
the humidity exceeds the upper bound of the Givoni’s comfort zone [16].

Execution states and ECA rules for temperature and humidity sensors are:

Σt = [temperature +→19 node +→ ‘tempSens’]
Σh = [humidity +→40 node +→ ‘humSens’]

Rt # temperature ! @(node = ‘system’) : temperature ← temperature (7)
Rh # humidity ! @(node = ‘system’) : humidity ← humidity (8)

The rule (7) on the temperature sensor device is simply responsible of sig-
naling changes to the resource temperature to the HVAC control system, by
selecting all devices that have the resource node equals to ‘system’; while the
rule (8) do the same for the resource humidity on the humidity sensor device.

The HVAC control system is also bestowed with a physical button for man-
ually stopping the air conditioning. Indeed, the rule (5) stops the air condi-
tioning (with the update conditioning ← ff) when the button is pressed (i.e.,
airButton = tt). Finally, by means of the invariant3

ιs = ¬(conditioning ∧ heating)

on the HVAC control system device we specify that no update can result in the
activation of both heating and air conditioning simultaneously. The complete
AbU system is Rs, ιs⟨Σs,∅⟩ ∥ Rt⟨Σt,∅⟩ ∥ Rh⟨Σh,∅⟩.

Note that, the same problem can be modeled by means of a single device,
embedding the two sensors and the control system. We can model this scenario
in AbU with a single device comprising all resources introduced so far and trans-
forming remote rules into local ones. This highlights the flexibility of AbU, that
is able to model both distributed and centralized ensembles of devices.
3 The formal definition of invariants will be introduced in Sect. 3.

358 M. Pasqua and M. Miculan

3 Distributed Verification of System-Level Invariants

We model local invariants as systems of linear inequalities over AbU expressions
ε, where expressions can only range over the resources of the node the invariants
belong to. That is, invariants ι are defined by the following grammar.

ι ::= ineq | ¬ι | ι ∧ ι | (ι)
ineq ::= ε < v | ε ≤ v | ε ̸= v with v ∈ V

Here expressions ε cannot contain remote resource lookup x. We can express
inequalities between arbitrary expressions with simple syntactic refactoring. For
instance, we can express ε1 < ε2 as ε1−ε2 < 0. Similarly, we can express equality
by negating an inequality. For instance, we can express ε1 = ε2 as ¬(ε1−ε2 ̸= 0).

In the following, we assume to have boolean, numeric (integers and deci-
mals) and string values in V, and to have basic arithmetic operations (addition,
subtraction, multiplication and division) over numeric values, as well as basic
operations (length, substring and concatenation) over string values. Comparison
operators < and ≤ are defined for numeric values only (with the usual seman-
tics), while ̸= is defined for all values.

Global invariants, or system-level invariants, have the same syntactic struc-
ture of local invariants, the only difference is that in global invariants I
expressions can range over resources of all nodes in the system. Moreover, in
global invariants resources may be indexed with node identifiers, to distinguish
resources (potentially having the same name) belonging to different nodes. If not
indexed, global invariant resources are considered on all possible nodes in the
system, keeping node anonymity typical of AbU. Nevertheless, in some scenarios
it may be necessary to refer to specific resources on specific nodes, so we added
that possibility in global invariants. The indexing is just syntactic sugar: when
nodes are not anonymous we can rename their resources with unique identifiers.

Smart HVAC System Revisited. Suppose to modify the HVAC example of Sub-
sect. 2.2, in order to remove the control system node. Heating and conditioning
controllers are moved to the temperature and humidity sensor nodes.

The execution state for the temperature and the humidity sensors become:

Σt = [temperature +→19 heating +→ff]
Σh = [humidity +→40 conditioning +→ff airButton +→ff]

The ECA rules Rt for the temperature sensor node are:

temperature ! (tt) : temperature ← temperature (9)
temperature ! (temperature < 18) : heating ← tt (10)
temperature ! (temperature > 27) : heating ← ff (11)

Local Reasoning and AbU for Enforcing Global Invariants in CASs 359

The ECA rules Rh for the humidity sensor node are:

airButton ! (airButton = tt) : conditioning ← ff (12)
humidity temperature!

(2 + 0.5 ∗ temperature < humidity ∧ 38 − temperature < humidity) :
conditioning ← tt

(13)

This formulation of the problem is equivalent to the one presented in Sub-
sect. 2.2, except for the invariant. Indeed, it is not guaranteed that the condi-
tioning system and the heater cannot be on at the same time. To enforce such
behavior we need a global invariant I = ¬(conditioningh ∧ heatingt) meaning
that the resources conditioningh of the humidity node and the resource heatingt
of the temperature node cannot be tt at the same time. We could also have
not indexed the resources conditioning and heating. Without indexes, the global
invariant I holds for all nodes having conditioning and heating as resources.

3.1 From Global to Local Invariants

Global invariants are properties, possibly involving multiple nodes, that must
hold for all components of the system. Ensuring their fulfillment requires, in
general, a central authority enforcing such property and, consequently, knowing
the topology of the system (or, at least, keeping an inventory of all deployed
nodes). A central authority is in contrast with autonomic systems, which are
decentralized in nature and usually rely on peer-to-peer communication only.

By exploiting AbU, we can guarantee global invariants in CASs without the
need of a central controlling authority. This is done by projecting a system-level
invariant to an ensemble of node-level invariants, that is, AbU local invariants.
The idea is that the fulfillment of local invariants, under specific assumptions,
guarantees the fulfillment of the corresponding global invariant. This requires
the replication of a global invariant on all nodes in its scope, that is, on all
nodes having at least a resource appearing in the (global) invariant. Since AbU
nodes do not have a shared knowledge about the state of external resources, we
have to propagate modifications to resources in the scope of global invariants to
all interested nodes. Such synchronization is achieved by adding suitable AbU
remote updates for each resource in the scope of global invariants.

Algorithm 1 describes how an AbU system S can be modified in order to
fulfill a global invariant I by means of an ensemble of local invariants, added to
the nodes in S. In particular, the algorithm assumes as input a global invariant
I in the conjunctive normal form, that is, of the form

∧m
i=1 ιi where each ιi

are either of the form ineq or ¬ι. The outer loops at lines 1..2 try to add each
conjunct of I to each node of the system S. This happens only when at least
one resource in the scope of the conjunct belongs to a node (condition at line
3). The line 4 add such conjunct ιj to the local invariant ι̂i of the ith node of
S. The inner loop at line 5 then adds all resources in the scope of the added
conjunct not already belong to the modified node to the node’s state Σi (line

360 M. Pasqua and M. Miculan

Algorithm DecentralizeInvariant(S, I)
/* the AbU system S is of the form

R1, ι̂1⟨Σ1,Θ1⟩ ∥ . . . ∥ Rn, ι̂n⟨Σn,Θn⟩ */
/* the global invariant I is of the form ι1 ∧ . . . ∧ ιm */

1 for i from 1 to n do
2 for j from 1 to m do
3 if vars(ιj) ∩ vars(Σi) ̸= ∅ then
4 ι̂i := ι̂i ∧ ιj
5 for all x in vars(ιj) \ vars(Σi) do
6 Σi := Σi ⊎ [x (→v] // here ⊎ denotes state join and

v∈ type(x)
end

7 for all x in vars(ιj) ∩ vars(Σi) do
8 Ri := Ri :: x ≫@(tt) : x ← x // here :: denotes list

concat
end

end
end

end
9 return S

Algorithm 1. Enhancing an AbU system with local invariants derived from
a given global invariant.

6). The added resources are initialized with a random value of the correct type.
Finally, the inner loop at line 7 adds to the modified node the ECA rules need
for synchronization. In particular, each resource x in the scope of the conjunct
that already belong to the modified node (condition at line 7) can be potentially
be (locally) updated by the node. Such modification should be reported to the
other nodes involved in the fulfillment of the conjunct (and, hence, of the global
invariant). This is done by performing a remote update of the local resource x by
adding a new ECA rule to rule list of the ith node in S (line 8). The added rule
here is a special rule having higher priority, since synchronization updates must
be considered before normal updates. A rule evt ≫ task has the same meaning
of a standard AbU rule evt!task except for the fact that the AbU semantics will
consider it with higher priority. This would need to add a priority-based update
scheduling mechanism to AbU, as we will see in Sect. 4.

Coming back to the revisited smart HVAC system introduced at the begin-
ning of the section, by applying Algorithm 1 we obtain the following AbU system.
The resource conditioning is added to the state of the temperature node, and
the resource heating is added to the state of the humidity node. That is:

Σt = [temperature +→19 heating +→ff conditioning +→ff]
Σh = [humidity +→40 conditioning +→ff airButton +→ff heating +→ff]

Local Reasoning and AbU for Enforcing Global Invariants in CASs 361

Then, synchronization ECA rules are added: one propagating the modifi-
cations of the resource heating from the temperature node to external nodes;
and another propagating the modifications of the resource conditioning from the
humidity node to external nodes. That is, the rule

heating ≫ @(tt) : heating ← heating (14)

is added to Σt and the rule

conditioning ≫ @(tt) : conditioning ← conditioning (15)

is added to Σh. These synchronization rules have higher priority than the rules
already present in the nodes. Finally, to both temperature and humidity nodes
the invariant ¬(conditioning ∧ heating) is added.

In the example, the global invariant and the local invariants coincide, but this
is not always the case. Indeed, if the global invariant would have stipulated a
constraint on resources not affecting the humidity and temperature nodes (e.g.,
I = ¬(conditioning∧heating)∧ (brightness < 125)), then the local invariants on
those nodes and the global invariant would have been different.

3.2 Aerial Drone Coalition

To showcase the generality of AbU invariants, we will present an additional
application scenario. A coalition of aerial drones is in charge of surveilling a
residential area. The flight of a drone is governed by a simple strategy: a target
position the drone is supposed to reach is periodically updated (e.g., at a constant
refresh-rate) by a control room communicating with the drone. When the drone
position or the target position change, the drone computes the movement to
perform in order to fly towards its target. We model such a movement with a
distance shift from the current position (the translation of this movement into
actual rotor commands is demanded to the low-level physics engine of the drone).

Let us assume to have n drones; each drone i ∈ [1..n] has the following AbU
resources: a sensor position, modeling the current GPS position of the drone
(updated by the physics engine of the drone); a sensor destination, modeling the
target GPS position the drone is aiming at (updated remotely by the control
room); and an actuator movement, modeled as a GPS coordinates shift (that
will instruct the physics engine on how to move the drone).

Each drone is then equipped with the following AbU rule:

position destination ! (|destination − position| ≥ δ) :
movement ← (destination − position)/|destination − position| (16)

The rule says that each time the drone position or the destination change, if
their distance is greater than a given threshold δ (possibly zero), the drone should
move one distance unit (e.g., a meter) towards the target. Given this simple
setting, we can specify interesting global invariants for the drone coalition. To
ease the notation, we denote with ∆i the distance shift, computed as in (16), for
the drone i ∈ [1..n], i.e., ∆i # (destinationi−positioni)/|destinationi−positioni|.

362 M. Pasqua and M. Miculan

Ground Control Station nearness Each drone cannot fly too far, i.e., beyond
a given limit l, from a specific geographical point G; formally:

Igcs # ∧
i∈[1..n] |(positioni + ∆i) − G| < l

Collision Avoidance Drones cannot get too close, i.e., no less than a given
threshold t, to each other (to prevent collisions); formally:

Ica # ∧i̸=j
i,j∈[1..n] |(positioni + ∆i) − positionj | > t

Dispersion limit A drone cannot stray too far, i.e., beyond a given limit l, from
the coalition barycenter; formally:

Icg # ∧
i∈[1..n] |(positioni + ∆i) − (

∑j ̸=i
j∈[1..n] positionj)/n| < l

In the first case Igcs, Algorithm 1 will simply add to each node i ∈ [1..n]
the local invariant |(positioni +∆i)−G| < l. No AbU synchronization rules will
be added, since no coordination between drones is needed to fulfill the (global)
invariant. In the second case Ica, Algorithm 1 will add to each node i ∈ [1..n] the
local invariant

∧
j∈[1..n]\{i} |(positioni + ∆i) − positionj | > t, together with the

resources in the scope of the added invariant missing from node i, that is, the
resources positionj such that j ∈ [1..n] \ {i}. Finally, the AbU synchronization
rule positioni ≫ @(tt) : positioni ← positioni will be added. The third case Icg
is analogous to the previous one.

4 Priority Scheduling and Correctness Guarantees

In order to enforce a global invariant by enforcing local invariants, updates exe-
cution should respect some priority ordering. Coming again to the revised HVAC
example, when we turn on the air cooling system and, subsequently, we turn on
the heater, we should guarantee that the update (conditioning, tt) is delivered
and executed on all nodes before the update (heating, tt). That is, synchroniza-
tion updates must be executed with higher priority than normal updates.

AbU semantics guarantees atomicity within the discovery phase, i.e., nodes
performing updates cannot be interrupted by discovery from other nodes4. This
ensures a causal order for updates delivery (any update execution are delivered
in order to all nodes), but it does not inherently guarantee a specific priority for
update execution. This is because each node relies on its local scheduler to deter-
mine the execution order of the updates in its pool. This design choice in AbU
promotes decoupling the theoretical model from practical implementation con-
cerns. However, it can lead to inconsistencies when updates need to be executed
under a specific priority order to maintain global system property (e.g., a global
invariant). To address this, in this section we propose a scheduling strategy, with
a slight modification of AbU semantics, that enforces priority ordering of update
execution, ensuring consistency and local-to-global invariant enforcement.
4 This guarantee can be realized by means of distributed transactions, as done in the
implementation available at https://github.com/abu-lang.

https://github.com/abu-lang

Local Reasoning and AbU for Enforcing Global Invariants in CASs 363

4.1 A Scheduling Strategy for Priority Ordering

A simple scheduler guaranteeing priority to synchronization updates can be
implemented with a slight modification of AbU semantics. In this case, a node
pool is modeled as a pair of sets of updates (Θ̂,Θ), instead of a single set of
updates. A high priority pool Θ̂ is devoted to contain high priority updates, while
another pool Θ to contain normal updates (i.e., updates with low priority). To
syntactically identify high priority updates, we must add to the AbU syntax high
priority ECA rules denoted evt ≫ task. The meaning of such rules is the same of
standard rules, except for the fact that the updates contained in task will have
high priority. In other words, updates resulting from high priority rules will be
added to the high priority pool, while updates resulting from normal rules will
be added to the normal, low priority, pool. The AbU semantics scheduler, will
first execute all updates in the high priority pool, and then the remaining low
priority updates in the normal pool. This is formalized by the modified AbU
semantic in Fig. 3 and the modified discovery function in Fig. 4. In the latter,
{|task|}Σ denotes the task obtained from task with each occurrence of a resource
x in the task condition and the right-hand side of assignments in the task action
replaced with the value Σ(x) (after that, each instance of x in the task action is
replaced with x and the modifier @ is dropped).

When external updates are propagated in the network, their priority level
should preserved. This is done by modifying LTS labels, that now model both
high priority and normal updates. Formally, the AbU semantics with priority is
modeled as a labeled transition system S1

α−!• S2 whose labels α are now of the
form: (P, T); upd ◃ (P, T); or upd " (P, T). Here, (P, T) is a pair of finite lists
of tasks (and upd is an update). In these labels, P represents the list of high
priority updates, while T represents the list of low priority updates.

4.2 Soundness of Local Invariants

Assuming a priority ordering of updates delivery and execution, we can prove
that the enforcing of local invariants, as defined by Algorithm 1, is sufficient
to guarantee the satisfaction of the corresponding global invariant. In other
words, given a global invariant I for the AbU system S, the AbU system
Sℓ = DecentralizeInvariant(S, I) is guaranteed to not violate I, for all its
possible executions. This is done by enforcing all local invariants in Sℓ. We
assume that Sℓ preserves the semantics of the original system S up-to the added
synchronization resources. Indeed, the ECA rules added by Algorithm 1 do not
affect the resources of the original system; more formally, it is possible to prove
that Algorithm 1 is semantics-preserving by defining a suitable hiding bismula-
tion [19,21] masquerading high priority updates.

Theorem 1. (Local Invariants Soundness). Let Sℓ be a system obtained
from an AbU system S by decentralizing the invariant I as per Algorithm 1. If
Sℓ satisfies I, then for all S′ reachable from Sℓ, S′ satisfies I.

364 M. Pasqua and M. Miculan

Fig. 3. LTS Semantics of the AbU calculus with priority.

Proof. Let us consider a (possibly infinite) sequence of transitions Sℓ
α1−!•

S1
α2−!• S2 If the label α1 does not contain any high priority task (i.e.,

α1 is of the form upd ◃ (ϵ, T)), it means that the update executed at the first
step does not involve any variable of the invariant I, because the only high pri-
ority updates are those generated by the rules added by Algorithm 1. Hence I
is still valid for S1; in this case, we can repeat the argument starting from S1.

Let us consider the case when α1 contains some high priority task, i.e., α1

is of the form upd ◃ (P, T) with P non-empty; this means that some variable
of I has been modified at the first step. Let x one of these variables, and let us
consider any node R, ι∧ιℓ⟨, , (Θ̂,Θ)⟩ in S1 where ιℓ is the part of invariant added
by Algorithm 1. Clearly, its high priority pool Θ̂ contains (x, v), to update the
local copy of x with the new value. This update can be executed by (ExecP)
because it does not violate neither the local invariant ι (since x has been freshly
added to the store Σ) nor ιℓ (otherwise the update would have violated the
invariant on the originating node at Sℓ already). Therefore, the update (x, v) is
executed before any update in Θ (due to priority), yielding to state S1, where
the invariant still holds. The same argument can be repeated until all updates
in all high priority pools are executed; this leads to some state Sn, where there

Local Reasoning and AbU for Enforcing Global Invariants in CASs 365

Fig. 4. Discovery functions for the AbU calculus semantics with priority.

are no further synchronization updates to apply, and invariant I still holds. Now
we can repeat the argument starting from Sn, proving the thesis. ⊓⊔

5 Conclusion

In this paper, we presented a novel approach to enforce global invariants, i.e.,
system-level properties, of Collective Adaptive Systems such as decentralized IoT
solutions. Global invariants stipulate correctness requirements (e.g., functional
or safety properties) that must hold for all components of the distributed system.
This is particularly challenging in CASs, due to the lack of a central authority.
To overcome the problem, we leveraged AbU to combine local node reasoning
with an efficient distribution mechanism, which dispenses from central entities
and node identity. The former corresponds to AbU node invariants, while lat-
ter corresponds to AbU remote updates. In particular, we provided a syntactic
translation of AbU systems in order to embed a global system invariant into an
ensemble of local node invariants. By assuming a suitable synchronization mech-
anism based on a prioritized scheduling of updates execution, the enforcement
mechanism of local invariants provided by the AbU semantics guarantees the
fulfillment of the global, system-level invariant.

Related Work. The literature about distributed systems verification is consis-
tent, starting from the classic work of Chandy and Lamport [13], Babaoglu
and Raynal [7] to more recent approaches; see Francalanza et al. [15] for a sur-
vey. Most such approaches consider a centralized scenario, or assume a shared
knowledge of the underlying system topology between nodes, thus do not fit the
CAS scenario. Little has been done in the CAS community about (decentral-
ized) verification. Aldrini [4] proposes a framework for designing and verifying
trust within CAS, but global/local invariants of the system are not considered.
Audrito et al. [6] argues that aggregate computing is particularly well-suited for
distributed runtime verification in the context of CAS. Aggregate computing
is a programming paradigm that views a collection of devices as a single com-
putational unit. It abstracts away the specifics of individual devices and their
locations, focusing on the overall computational process. However, this model is
difficult to apply in scenarios where different devices are assigned with specific

366 M. Pasqua and M. Miculan

tasks and are supposed to fulfill specific constraints (e.g., in many IoT applica-

tions). Finally, Bortolussi et al. [11] propose CARMA, a framework designed for

modeling the dynamic and adaptive behavior of CASs, allowing for analysis of

the system’s performance and identification of potential implementation issues.

Nevertheless, CARMA does not allow to define global/local invariants for the

system.

Future work We plan to investigate how the proposed approach can be gener-

alized to enforce program aspects that go beyond invariants, such as liveness

properties [5] (e.g., fairness) or hyperproperties [14] (e.g., confidentiality leaks).

Another possible line of work may include the weakening of the AbU semantics,

by relaxing the atomicity constraint of updates distribution. This may result

in different scheduling policies needed to guarantee the relation between global

and local invariants discussed in Section 4. Finally, it would be interesting to

consider also quantitative aspects in the semantics, along the lines of [8,9].

Acknowledgments. This research has been partially supported by the Department
Strategic Project on Artificial Intelligence of the University of Udine (2020-25), and the
project SERICS (PE00000014) under the NRRP MUR program funded by EU-NGEU.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) Formal Techniques for Distributed
Objects, Components, and Systems. pp. 1–18. Springer, Cham (2016)

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428

3. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proc. 30th SAC. pp. 1840–1845. ACM (2015)

4. Aldini, A.: Design and verification of trusted collective adaptive systems. ACM
Trans. Model. Comput. Simul. 28(2) (2018). https://doi.org/10.1145/3155337

5. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters
21(4), 181–185 (1985). https://doi.org/10.1016/0020-0190(85)90056-0

6. Audrito, G., Damiani, F., Stolz, V., Viroli, M.: On distributed runtime verification
by aggregate computing. In: Ancona, D., Pace, G. (eds.) Proceedings of the Second
Workshop on Verification of Objects at RunTime EXecution. EPTCS, vol. 302, pp.
47–61 (2019). https://doi.org/10.4204/EPTCS.302.4

7. Babaoglu, O., Raynal, M.: Specification and verification of dynamic properties in
distributed computations. Journal of Parallel and Distributed Computing 28(2),
173–185 (1995). https://doi.org/10.1006/jpdc.1995.1098

8. Bacci, G., Miculan, M.: Structural operational semantics for continuous state prob-
abilistic processes. In: Proceedings of Coalgebraic Methods in Computer Science
(CMCS). Lecture Notes in Computer Science, vol. 7399, pp. 71–89. Springer (2012).
https://doi.org/10.1007/978-3-642-32784-1_5

9. Bacci, G., Miculan, M.: Structural operational semantics for continuous state
stochastic transition systems. J. Comput. Syst. Sci. 81(5), 834–858 (2015). https:
//doi.org/10.1016/J.JCSS.2014.12.003

https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1145/3155337
https://doi.org/10.1145/3155337
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.4204/EPTCS.302.4
https://doi.org/10.4204/EPTCS.302.4
https://doi.org/10.1006/jpdc.1995.1098
https://doi.org/10.1006/jpdc.1995.1098
https://doi.org/10.1007/978-3-642-32784-1_5
https://doi.org/10.1007/978-3-642-32784-1_5
https://doi.org/10.1016/J.JCSS.2014.12.003
https://doi.org/10.1016/J.JCSS.2014.12.003
https://doi.org/10.1016/J.JCSS.2014.12.003
https://doi.org/10.1016/J.JCSS.2014.12.003

Local Reasoning and AbU for Enforcing Global Invariants in CASs 367

10. Balliu, M., Merro, M., Pasqua, M., Shcherbakov, M.: Friendly fire: Cross-app
interactions in IoT platforms. ACM Trans. Priv. Secur. 24(3) (2021), https:
//doi.org/10.1145/3444963

11. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: CARMA: Collective adaptive resource-sharing markovian
agents. In: Proc. QAPL 2015. p. 16–31 (2015). https://doi.org/10.4204/eptcs.194.2

12. Cano, J., Rutten, E., Delaval, G., Benazzouz, Y., Gurgen, L.: ECA rules for IoT
environment: A case study in safe design. In: Proc. 8th SASOW. pp. 116–121.
IEEE, USA (2014), https://doi.org/10.1109/SASOW.2014.32

13. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
a distributed system. ACM Transactions on Computer Systems pp. 63–75 (1985)

14. Clarkson, M., Schneider, F.: Hyperproperties. In: 21st IEEE Computer Security
Foundations Symposium. pp. 51–65 (2008). https://doi.org/10.1109/CSF.2008.7

15. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime Verification for Decentralised
and Distributed Systems, pp. 176–210. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5_6

16. Givoni, B.: Comfort, climate analysis and building design guidelines. Energy and
Buildings 18(1), 11–23 (1992)

17. Miculan, M., Pasqua, M.: A calculus for attribute-based memory updates. In:
Cerone, A., Ölveczky, P. (eds.) Proc. 18th International Colloquium on Theoretical
Aspects of Computing (ICTAC). Lecture Notes in Computer Science, vol. 12819,
pp. 366–385. Springer (2021). https://doi.org/10.1007/978-3-030-85315-0_21

18. Pasqua, M., Comuzzo, M., Miculan, M.: The AbU language: IoT distributed pro-
gramming made easy. IEEE Access 10, 132763–132776 (2022). https://doi.org/10.
1109/ACCESS.2022.3230287

19. Pasqua, M., Miculan, M.: On the security and safety of AbU systems. In: Proc. 19th
SEFM. Lecture Notes in Computer Science, vol. 13085, pp. 178–198. Springer
(2021). https://doi.org/10.1007/978-3-030-92124-8_11

20. Pasqua, M., Miculan, M.: AbU: A calculus for distributed event-driven program-
ming with attribute-based interaction. Theoretical Computer Science pp. 1–32
(2023). https://doi.org/10.1016/j.tcs.2023.113841

21. Pasqua, M., Miculan, M.: Behavioral equivalences for AbU: Verifying security and
safety in distributed IoT systems. Theoretical Computer Science pp. 1–32 (2024).
https://doi.org/https://doi.org/10.1016/j.tcs.2024.114537

https://doi.org/10.1145/3444963
https://doi.org/10.1145/3444963
https://doi.org/10.4204/eptcs.194.2
https://doi.org/10.4204/eptcs.194.2
https://doi.org/10.1109/SASOW.2014.32
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1007/978-3-319-75632-5%5C_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-030-85315-0%5C_21
https://doi.org/10.1007/978-3-030-85315-0_21
https://doi.org/10.1109/ACCESS.2022.3230287
https://doi.org/10.1109/ACCESS.2022.3230287
https://doi.org/10.1109/ACCESS.2022.3230287
https://doi.org/10.1109/ACCESS.2022.3230287
https://doi.org/10.1007/978-3-030-92124-8%5C_11
https://doi.org/10.1007/978-3-030-92124-8_11
https://doi.org/10.1016/j.tcs.2023.113841
https://doi.org/10.1016/j.tcs.2023.113841
https://doi.org/https://doi.org/10.1016/j.tcs.2024.114537
https://doi.org/https://doi.org/10.1016/j.tcs.2024.114537

	Local Reasoning and Attribute-Based Memory Updates for Enforcing Global Invariants in Collective Adaptive Systems
	1 Introduction
	2 Attribute-Based Memory Updates and CASs
	2.1 The AbU Calculus
	2.2 CAS Examples in AbU

	3 Distributed Verification of System-Level Invariants
	3.1 From Global to Local Invariants
	3.2 Aerial Drone Coalition

	4 Priority Scheduling and Correctness Guarantees
	4.1 A Scheduling Strategy for Priority Ordering
	4.2 Soundness of Local Invariants

	5 Conclusion
	References

