
Behavioral Equivalences for AbU:
Verifying Security and Safety in Distributed IoT Systems

joint work with Michele Pasqua from University of Verona

Marino Miculan

IMT Alti Studi - Lucca

May 24, 2023
marino.miculan@uniud.it

The Event-Condition-Action model

Environment

RULE

input

Ev
en

t

Condition

output

Action

(sensors) (actuators)

(IoT setting)

Memory-based rules: “when movement if is-night then ring-alarm”

M. Miculan IMT Alti Studi1 18

Actual smart (ECA) devices setting

Centralized

No intra-nodes communication

Cloud-dependent

Very popular:

Internet

M. Miculan IMT Alti Studi2 18

Next smart (ECA) devices setting: edge computing

Fully distributed

Communication between nodes

Cloud-agnostic

Identity decoupled, for scalability

Internet

M. Miculan IMT Alti Studi3 18

Attribute-based Memory Updates

Nodes behavior: defined by ECA rules like “on z for all ⇧ : x e”

3 2

1

Nodes state: local memory Interaction: remote updates
1

2

Interaction: remote updates
1

2

Attribute-based interaction: on all nodes satisfying ⇧, update the remote x with e

(Inspired by Attribute-based communication, by Alrahman, De Nicola, Loreti)M. Miculan IMT Alti Studi4 18

The AbU calculus

An AbU system S is an AbU node R , ◆h⌃, ⇥i or the parallel of systems S1 kS2
Each node is equipped with a list R of AbU rules and an invariant ◆

evt m act1 , cnd : act2
task

event

list of resources

assignments

x " (local)

forall @ x " (remote)default

for all: @(x < x) m x x

“select all nodes with (remote) x greater than the current (local) x”

“assign the selected nodes (remote) x with the current (local) x”

M. Miculan IMT Alti Studi5 18

AbU execution model

Stable

(I
N

P
U

T)

v
discovery

~1 ~2

v

(EXEC)
~1

discovery

~4 ~2
~3

~1 . . .

. . .

~3

(E
X

E
C
)

~3
discovery

~3

Stable

(WAVE)

S S0

M. Miculan IMT Alti Studi6 18

AbU operational semantics

LTS semantics, with judgments:

R , ◆h⌃, ⇥i ↵�_ R , ◆h⌃0, ⇥0i

A label ↵ can be:
an input label, upd I T

an execution label, upd B T

a discovery label, T
(See paper on TCS 2023, DOI 10.1016/j.tcs.2023.113841)

M. Miculan IMT Alti Studi7 18

AbU operational semantics: rules

(Exec)

upd 2 � upd = (x1, v1) . . . (xk, vk) �� = �[v1/x1 . . . vk/xk] �� |= ◆
��� = � \ {upd} X = {xi | i 2 [1..k] ^ �(xi) 6= ��(xi)}

�� = ��� [DefUpds(R, X, ��) [LocalUpds(R, X, ��) T = ExtTasks(R, X, ��)

R, ◆h�, �i upd�T����_ R, ◆h��, ��i

(Exec-Fail)
upd 2 � upd = (x1, v1) . . . (xk, vk) �� = �[v1/x1 . . . vk/xk] �� 6|= ◆ �� = � \ {upd}

R, ◆h�, �i upd�T����_ R, ◆h�, ��i

(Input)

v1, . . . , vk 2 V �� = �[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
�� = � [DefUpds(R, X, ��) [LocalUpds(R, X, ��) T = ExtTasks(R, X, ��)

R, ◆h�, �i (x1,v1)...(xk,vk)�T������������_ R, ◆h��, ��i

(Disc)
��� = {�act�� | �i 2 [1..n] . taski = � : act ^ � |= �} �� = � [���

R, ◆h�, �i task1...taskn�������_ R, ◆h�, ��i

(StepL)
S1

��_ S�
1 S2

T�_ S�
2

S1 k S2
��_ S�

1 k S�
2

��{upd�T,upd�T} (StepR)
S1

T�_ S�
1 S2

��_ S�
2

S1 k S2
��_ S�

1 k S�
2

��{upd�T,upd�T}

Figure 1: Semantics of AbU calculus with invariants.

indicating in which operative state is the drone; and a resource helpPos, indicating the position of a drone
that needs help. Formally, the AbU system modeling the drone-swarm scenario is

S = Rh�1, ?i k Rh�2, ?i k Rh�3, ?i k Rh�4, ?i

where R contains, among the others, the following two AbU rules:

battery m @(battery < 5 ^ battery > 80) : helpPos position (1)
helpPos m (|position� helpPos| < 7.0) : mode ‘rescue’ (2)

Now suppose that the execution states of the drones are the following:

�1 = [battery ��4 position ��2.0 mode �� ‘measure’ helpPos ��0.0]
�2 = [battery ��81 position ��15.0 mode �� ‘measure’ helpPos ��0.0]
�3 = [battery ��97 position ��6.0 mode �� ‘measure’ helpPos ��0.0]
�4 = [battery ��65 position ��8.0 mode �� ‘measure’ helpPos ��0.0]

The rule (1) says that when the current drone battery level is low (battery < 5), then the current drone
have to send to all (@) neighbors with some energy to share (battery > 80) its position, performing a remote
update (helpPos position). In the example, the first node can fire the rule (1), since its battery level
is low. Then, it pre-evaluates the task condition, yielding 4 < 5 ^ battery > 80, which is sent to the other
nodes, together with the pre-evaluation of the task action, i.e., helpPos 2.0. Among all receivers, only
the second and the third nodes are interested in the communication, since they are the only with battery
level greater than 80. So they both add to their pool the update (helpPos, 2.0). This ends the discovery
phase originated by the first node.

The rule (1), instead, is fired when a drone receives a help request (i.e., when its resource helpPos changes)
and basically checks if the current drone position is close to the requester position (|position� helpPos| <
7.0). If it is the case, the current drone enters the rescue mode performing a local update (mode ‘rescue’).
In the example, when the second and the third nodes execute the update (helpPos, 2.0), the task of the rule
(1) may be executed. For the second node this does not happen, since |15.0 � 2.0| < 7.0 is not true (the
node is too far from the first node). Instead, |6.0� 2.0| < 7.0 and the third node can execute the rule task,
adding to its pool the update (mode, ‘rescue’).

5

M. Miculan IMT Alti Studi8 18

A (modular) distributed implementation

AbU node

Device drivers
IoT interface

sensors/actuators

Distribution
Communication layer

other AbU nodes
network

ECA rules engine
Attribute-based memory updatesDistributed discovery

ECA rules engine module: AbU semantics
Device drivers module: abstraction of physical resources
Distribution module: abstraction of send/receive and cluster nodes join/leave
Available at https://github.com/abu-lang

M. Miculan IMT Alti Studi9 18

https://github.com/abu-lang

The AbU Language: a Domain Specific Language for the IoT

1 # AbU devices definition.

2

3 hvac : "An HVAC control system" {

4 physical output boolean heating = false

5 physical output boolean condit = false

6 logical integer temp = 0

7 logical integer humidity = 0

8 physical input boolean airButton

9 logical string node = "hvac"

10 where not (condit and heating == true)

11 } has cool warm dry stopAir

12

13 tempSens : "A temperature sensor" {

14 physical input integer temp

15 logical string node = "tempSens"

16 } has notifyTemp

17

18 humSens : "A humidity sensor" {

19 physical input integer humidity

20 logical string node = "humSens"

21 } has notifyHum

22 \%

23 AbU (ECA) rules definition.

24 Rules can be referenced by multiple devices.

25 %\

26

27 rule cool on temp

28 for (this.temp < 18) do this.heating = true

29

30 rule warm on temp

31 for (this.temp > 27) do this.heating = false

32

33 rule dry on humidity; temp

34 for (this.temp * 0.14 < this.humidity)

35 do this.condit = true

36

37 rule stopAir on airButton

38 for (this.airButton) do this.condit = false

39

40 rule notifyTemp on temp

41 for all (ext.node == "hvac")

42 do ext.temp = this.temp

(See paper on IEEE Access 2022, DOI 10.1109/ACCESS.2022.3230287)
M. Miculan IMT Alti Studi10 18

Security and Safety requirements

Security

H H Lenter area log position

H H Lnew post new post

Safety

save photosave photo upload photo
same folder

leave workleave work open window
implicit interaction

M. Miculan IMT Alti Studi11 18

Hiding bisimulation

Weak bisimulation hiding labels not related to the requirements
Parametric on a function h making non-observable labels ↵ such that h(↵) = ⇧

if h(↵2) 6= ⇧

↵1

↵2

↵3

⇡h

↵1

↵2

↵3

if h(↵2) = ⇧

↵1

↵2

↵3

⇡h with h(↵0
2) = ⇧

↵1

↵0
2

↵3

Security hL hides:
discovery labels
execution labels with H resources

Safety hS hides:
discovery labels
execution labels produced by S

M. Miculan IMT Alti Studi12 18

Security: behavioral equivalence

Protection of confidential data (noninterference)

Security policy: L (public) and H (confidential) resources
No flows from H to L allowed
Bisimulation ⇡hL

that hides H-level updates
R1 . . .Rn is interference-free if it “behaves the same” for L-equivalent states

R1 . . .Rn

R1 . . .Rn R1 . . .Rn

⌃1 . . . ⌃n ⌃0
1

. . . ⌃0
n

⇡hL

Hiding bisimulation:

execution labels

with H resources

for all L-equivalent states ⌃1 ⌘L ⌃0
1 . . . ⌃n ⌘L ⌃0

n

M. Miculan IMT Alti Studi13 18

Security: behavioral equivalence

This definition captures leaks due to internal resources modifications, but not leaks
originated by external changes (i.e., inputs) on high-level variables. E.g.:

motion m (00 :00 < time ^ time < 06 :00) : light ‘on’

(where motion is H and light is L) is interference-free as defined above, but it
actually leaks confidential information.
R1 . . .Rn is presence-sensitive interference-free if it “behaves the same” for
L-equivalent states and under renaming of rule triggers of level H

R1 . . .Rn

R1 . . .Rn R 0
1 . . .R 0

n

⌃1 . . . ⌃n ⌃0
1

. . . ⌃0
n

⇡hL

for all L-equivalent states ⌃1 ⌘L ⌃0
1 . . . ⌃n ⌘L ⌃0

nM. Miculan IMT Alti Studi14 18

Security: verification algorithm

Algorithm IFRules for computing information flows:

context is L

x "
explicit

x : L " not constant

context is H

x "
implicit

x : L " constant

Compute a constancy analysis for conditions and expressions
Check explicit flows for the default action
Check explicit and implicit flows for the task action

Theorem (Soundness for Security)

If IFRules(R) = false then R is noninterferent, namely R is secure.

M. Miculan IMT Alti Studi15 18

Safety: behavioral equivalence

Prevention of unintended interactions

The systems S and R are known to be safe
Is the ensemble of all nodes in S and R still safe?
Bisimulation ⇡hS

that hides the updates of S

S k ⇡hS

R R
Hiding bisimulation:

execution labels

produced by S

S does not interact with, or is transparent for, R

M. Miculan IMT Alti Studi16 18

Safety: verification algorithm

Compute sinks: resources that rules may update
Compute sources: resources that may influence rules behavior

Check that the sinks of S does not overlap with the sources of R

x1 . . . xk m y1 "1 . . . yn "n , (cnd) : yn+1 "n+1 . . . yn+m "n+m

event default task

{y1, . . . , yn} [{yn+1, . . . , yn+m} LHSLHS

{x1, . . . , xk} [Vars("1) [. . . [Vars("n) [Vars(cnd) [Vars("n+1) [. . . [Vars("n+m)
RHS RHS

Theorem (Soundness for Safety)

If sinks(S) \ sources(R) = ? then S is transparent for R.

M. Miculan IMT Alti Studi17 18

Conclusion and Future Work

AbU: a new programming paradigm for smart (ECA) devices

Distributed and decentralized
Mitigate scalability, availability and privacy issues
Preserve programming simplicity

In this talk
Bisimulation-based Security and Safety requirements for AbU
Sound verification mechanisms for the requirements

Future work
Heuristics for implicit interactions
Add a declassification mechanism
Define correctness requirements (e.g., confluence)

M. Miculan IMT Alti Studi18 18

Security and Safety of IoT Systems Based on ECA Rules

Thanks for the attention!

- M Miculan, M Pasqua, A Calculus for Attribute-based Memory Updates, Proc. ICTAC
2021 - LNCS 12819;
- M Pasqua, M Miculan, On the Security and Safety of AbU Systems, International
Conference on Software Engineering and Formal Methods, LNCS 13085, 2021.
- M Pasqua, M Miculan, Distributed Programming of Smart Systems with
Event-Condition-Action Rules, ICTCS 2022: 201-206
- M Pasqua, M Comuzzo, M Miculan, The AbU Language: IoT Distributed
Programming Made Easy, IEEE Access 10: 132763-132776 (2022)
- M Pasqua, M Miculan, AbU: A calculus for distributed event-driven programming with
attribute-based interaction. TCS 958: 113841 (2023)
- https://github.com/abu-lang

M. Miculan IMT Alti Studi

https://github.com/abu-lang

